English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-04-11 03:04:24 · 3 answers · asked by Ricardo 1 in Science & Mathematics Mathematics

3 answers

Multiply top and bottom by (2 + √6):

3/(2-√6) =
3·(2 + √6) / (2 - √6)·(2 + √6) =
3·(2 + √6) / (2² - √6²) =
3·(2 + √6) / (4 - 6) =
- 3·(2 + √6) / 2 =
(- 6 - 3√6) / 2

2007-04-11 03:09:36 · answer #1 · answered by M 6 · 4 2

3/(2 - sqrt(6))

To rationalize the denominator, multiply top and bottom by the bottom's conjugate, 2 + sqrt(6).

[3(2 + sqrt(6))] / [ (2 - sqrt(6)) (2 + sqrt(6)) ]

Note that, when squaring a square root, you get the argument back. For instance, [sqrt(5)]^2 = 5. Also note that, when multiplying conjugates (a - b)(a + b) together, we get the result (a^2 - b^2). This is precisely how the denominator gets rationalized.

[3(2 + sqrt(6))] / [4 - 6]

Simplify.

[3(2 + sqrt(6))] / (-2)

(-3/2) (2 + sqrt(6))

2007-04-11 10:12:01 · answer #2 · answered by Puggy 7 · 0 1

3 / (2 - √6)

3(2 + √6) / (2 - √6)(2 + √6

6 + 3√6 / 4 - √36

6 + 3√6 / 4 - 6

6 + 3√6 / - 2

- - - - - - - - - -s-

2007-04-11 11:43:08 · answer #3 · answered by SAMUEL D 7 · 0 0

fedest.com, questions and answers