English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

cos35sin55 + sin35cos55
numbers are in degrees

help?

2007-04-10 19:47:33 · 7 answers · asked by Rusty 1 in Science & Mathematics Mathematics

7 answers

Remember that sin(A + B) = sinAcosB + cosAsinB

Therefore:

cos 35 sin 55 + sin 35 cos 55
= sin 35 cos 55 + cos 35 sin 55
= sin (35 + 55)
= sin 90
= 1

2007-04-10 19:54:59 · answer #1 · answered by ako_talaga_ito 2 · 2 0

cos35sin55 + sin35cos55 =
(cos35)(sin55) + (sin35)(cos55) =
(0∙819 152 044...)(0∙819 152 044...) + (0∙573 576 436...)(0∙573 576 436...) =

(0∙671 010 071...) + (0∙328 989 928) = 1

2007-04-11 03:12:48 · answer #2 · answered by Brenmore 5 · 0 0

sin(A + B) = sinAcosB + cosAsinB

cos 35 sin 55 + sin 35 cos 55
= sin (35 + 55)
= sin 90 = 1.

Q.E.D

2007-04-11 03:06:13 · answer #3 · answered by prey of viper 3 · 0 0

sin(35+55)=sin35cos55+cos35sin55
=sin90
=1

2007-04-11 03:16:22 · answer #4 · answered by Hanbiao 1 · 0 0

use the formula
sin (A+B) = (sinAcosB) + (sinBcosA)
Here A= 55 & B=35
so ans. sin90
i.e. =1

2007-04-11 03:03:01 · answer #5 · answered by know it 2 · 0 0

(cos35)(sin55) + (sin35)(cos55)

= (cos35)[cos(90-55)] + (sin35)[sin(90-55)]

= cos²35° + sin²35° = 1

2007-04-11 03:05:30 · answer #6 · answered by Northstar 7 · 0 0

sin(A+B) = sinA*cosB + cosA*sinB

Your answer is sin(35+55)= sin(90) = 1

2007-04-11 03:03:14 · answer #7 · answered by gp4rts 7 · 0 0

fedest.com, questions and answers