English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

4 answers

A volcano is a hill or mountain constructed by the extrusion of lava or rock fragments and gas explosions. The majority of the volcanic activity that occurs ono this planet is in tectonically active areas with known subduction zones, where the oceanic plates are going under the continential plates. One exception is the Hawaiian Island chains, they were formed by what is known as a "mantle hot spot"

2007-04-03 05:42:14 · answer #1 · answered by ? 6 · 1 0

A volcano, simply put, is a geological phenomena where molten rock (aka lava), hot gases, and ash (among other things) can escape from inside the Earth. Most volcanoes occur along the "Ring of Fire" or along the Pacific Tectonic Plate, or on the boarders of the Pacific Ocean.

Hope this helps!

2007-04-02 15:28:53 · answer #2 · answered by Anonymous · 0 0

Here's a link that says a lot about it, hope this helps...
http://en.wikipedia.org/wiki/Volcanos

2007-04-02 15:26:54 · answer #3 · answered by smilest_16_2002 2 · 0 0

A volcano is an opening (or rupture) in the Earth's surface or crust, which allows hot, molten rock, ash and gases to escape from deep below the surface. Volcanic activity involving the extrusion of rock tends to form mountains or features like mountains over a period of time.

Volcanoes are generally found where tectonic plates pull apart or are coming together. A mid-oceanic ridge, like the Mid-Atlantic Ridge, has examples of volcanoes caused by "divergent tectonic plates" pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by "convergent tectonic plates" coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching of the Earth's crust and where the crust grows thin (called "non-hotspot intraplate volcanism"), such as in the African Rift Valley, the European Rhine Graben with its Eifel volcanoes, the Wells Gray-Clearwater Volcanic Field and the Rio Grande Rift in North America.

Finally, volcanoes can be caused by "mantle plumes", so-called "hotspots"; these hotspots can occur far from plate boundaries, such as the Hawaiian Islands. Interestingly, hotspot volcanoes are also found elsewhere in the solar system, especially on rocky planets and moons.


Locations:
Divergent plate boundaries
At the mid-oceanic ridges, two tectonic plates diverge from one another. New oceanic crust is being formed by hot molten rock slowly cooling down and solidifying. In these places, the crust is very thin and eruptions occur frequently because of the pull by the tectonic plates. The main part of the mid-oceanic ridges are at the bottom of the ocean, and most volcanic activity is submarine. Black smokers are a typical example of this kind of volcanic activity. Where the mid-oceanic ridge comes above sea-level, volcanoes like the Hekla on Iceland are formed. Divergent plate boundaries create new seafloor and volcanic islands.


Types of Volcanos:
The most common perception of a volcano is of a conical mountain, spewing lava and poisonous gases from a crater in its top. This describes just one of many types of volcano and the features of volcanoes are much more complicated. The structure and behavior of volcanoes depends on a number of factors. Some volcanoes have rugged peaks formed by lava domes rather than a summit crater, whereas others present landscape features such as massive plateaus. Vents that issue volcanic material (lava, which is what magma is called once it has broken the surface, and ash) and gases (mainly steam and magmatic gases) can be located anywhere on the landform. Many of these vents give rise to smaller cones such as Puʻu ʻŌʻō on a flank of Hawaii's Kīlauea.

Other types of volcanoes include cryovolcanos (or ice volcanoes), particularly on some moons of Jupiter, Saturn and Neptune; and mud volcanoes, which are formations often not associated with known magmatic activity. Active mud volcanoes tend to involve temperatures much lower than those of igneous volcanoes, except when a mud volcano is actually a vent of an igneous volcano.


Shield volcanoes

Toes of a pāhoehoe advance across a road in Kalapana on the east rift zone of Kīlauea Volcano in Hawaii.Main article: Shield volcano
Hawaii and Iceland are examples of places where volcanoes extrude huge quantities of basaltic lava that gradually build a wide mountain with a shield-like profile. Their lava flows are generally very hot and very fluid, contributing to long flows. The largest lava shield on Earth, Mauna Loa, rises over 9,000 m from the ocean floor, is 120 km in diameter and forms part of the Big Island of Hawaii. Olympus Mons is the largest shield volcano on Mars, and is the tallest known mountain in the solar system. Smaller versions of shield volcanoes include lava cones, and lava mounds.

Quiet eruptions spread out basaltic lava in flat layers. The buildup of these layers form a broad volcano with gently sloping sides called a shield volcano. Examples of shield volcanoes are the Hawaiian Islands.


Cinder cones
Main article: Volcanic cone
Volcanic cones or cinder cones result from eruptions that throw out mostly small pieces of scoria and pyroclastics (both resemble cinders, hence the name of this volcano type) that build up around the vent. These can be relatively short-lived eruptions that produce a cone-shaped hill perhaps 30 to 400 m high. Most cinder cones erupt only once. Cinder cones may form as flank vents on larger volcanoes, or occur on their own. Parícutin in Mexico and Sunset Crater in Arizona are examples of cinder cones.


Stratovolcanoes

In difference to pāhoehoe, Aa is a term of Polynesian origin, pronounced Ah-ah, for rough, jagged, spiny lavaflowMain article: Stratovolcano
Stratovolcanoes are tall conical mountains composed of lava flows and other ejecta in alternate layers, the strata that give rise to the name. Stratovolcanoes are also known as composite volcanoes. Classic examples include Mt. Fuji in Japan, Mount Mayon in the Philippines, and Mount Vesuvius and Stromboli in Italy.


Super volcanoes
Main article: Supervolcano
A supervolcano is the popular term for a large volcano that usually has a large caldera and can potentially produce devastation on an enormous, sometimes continental, scale. Such eruptions would be able to cause severe cooling of global temperatures for many years afterwards because of the huge volumes of sulfur and ash erupted. They can be the most dangerous type of volcano. Examples include Yellowstone Caldera in Yellowstone National Park, Lake Taupo in New Zealand and Lake Toba in Sumatra, Indonesia. Supervolcanoes are hard to identify centuries later, given the enormous areas they cover. Large igneous provinces are also considered supervolcanoes because of the vast amount of basalt lava erupted.


Submarine volcanoes
Main article: Submarine volcano

Pillow lava (NOAA)Submarine volcanoes are common features on the ocean floor. Some are active and, in shallow water, disclose their presence by blasting steam and rocky debris high above the surface of the sea. Many others lie at such great depths that the tremendous weight of the water above them prevents the explosive release of steam and gases, although they can be detected by hydrophones and discoloration of water because of volcanic gases. Even large submarine eruptions may not disturb the ocean surface. Because of the rapid cooling effect of water as compared to air, and increased buoyancy, submarine volcanoes often form rather steep pillars over their volcanic vents as compared to above-surface volcanos. In due time, they may break the ocean surface as new islands. Pillow lava is a common eruptive product of submarine volcanoes.


Subglacial volcanoes
Main article: Subglacial volcano

Herðubreið, one of the tuyas in IcelandSubglacial volcanoes develop underneath icecaps. They are made up of flat lava flows atop extensive pillow lavas and palagonite. When the icecap melts, the lavas on the top collapse leaving a flat-topped mountain. Then, the pillow lavas also collapse, giving an angle of 37.5 degrees. These volcanoes are also called table mountains, tuyas or (uncommonly) mobergs. Very good examples of this type of volcano can be seen in Iceland, however, there are also tuyas in British Columbia. The origin of the term comes from Tuya Butte, which is one of the several tuyas in the area of the Tuya River and Tuya Range in northern British Columbia. Tuya Butte was the first such landform analyzed and so its name has entered the geological literature for this kind of volcanic formation. The Tuya Mountains Provincial Park was recently established to protect this unusual landscape, which lies north of Tuya Lake and south of the Jennings River near the boundary with the Yukon Territory.





Convergent plate boundaries
In places where one tectonic plate submerges beneath another at a deep ocean trench, the crust melts and becomes magma. This surplus amount of magma generated in one location causes the formation of the volcano. Typical examples for this kind of volcano are the volcanoes in the Pacific Ring of Fire, Mount Etna.


Hotspots
Hotspots are not located on the ridges of tectonic plates, but on top of mantle plumes, where the convection of Earth's mantle creates a column of hot material that rises until it reaches the crust, which tends to be thinner than in other areas of the Earth. The temperature of the plume causes the crust to melt and form pipes, which can vent magma. Because the tectonic plates move whereas the mantle plume remains in the same place, each volcano becomes dormant after a while and a new volcano is then formed as the plate shifts over the hotspot. The Hawaiian Islands are thought to be formed in such a manner, as well as the Snake River Plain, with the Yellowstone Caldera being the current part of the North American plate over the hotspot.

Type of erupted material:

Lava composition
Another way of classifying volcanoes is by the composition of material erupted (lava), since this affects the shape of the volcano. Lava can be broadly classified into 4 different compositions (Cas & Wright, 1987):

If the erupted magma contains a high percentage (>63%) of silica, the lava is called felsic.
Felsic lavas (or rhyolites) tend to be highly viscous (not very fluid) and are erupted as domes or short, stubby flows. Viscous lavas tend to form stratovolcanoes or lava domes. Lassen Peak in California is an example of a volcano formed from felsic lava and is actually a large lava dome.
Because siliceous magmas are so viscous, they tend to trap volatiles (gases) that are present, which cause the magma to erupt catastrophically, eventually forming stratovolcanoes. Pyroclastic flows (ignimbrites) are highly hazardous products of such volcanoes, since they are composed of molten volcanic ash too heavy to go up into the atmosphere, so they hug the volcano's slopes and travel far from their vents during large eruptions. Temperatures as high as 1,200 °C are known to occur in pyroclastic flows, which will incinerate everything flammable in their path and thick layers of hot pyroclastic flow deposits can be laid down, often up to many meters thick. Alaska's Valley of Ten Thousand Smokes, formed by the eruption of Novarupta near Katmai in 1912, is an example of a thick pyroclastic flow or ignimbrite deposit. Volcanic ash that is light enough to be erupted high into the Earth's atmosphere may travel many kilometres before it falls back to ground as a tuff.
If the erupted magma contains 52-63% silica, the lava is of intermediate composition.
These "andesitic" volcanoes generally only occur above subduction zones (e.g. Mount Merapi in Indonesia).
If the erupted magma contains <52% and >45% silica, the lava is called mafic (because it contains higher percentages of magnesium (Mg) and iron (Fe)) or basaltic. These lavas are usually much less viscous than rhyolitic lavas, depending on their eruption temperature; they also tend to be hotter than felsic lavas. Mafic lavas occur in a wide range of settings:
At mid-ocean ridges, where two oceanic plates are pulling apart, basaltic lava erupts as pillows to fill the gap;
Shield volcanoes (e.g. the Hawaiian Islands, including Mauna Loa and Kilauea), on both oceanic and continental crust;
As continental flood basalts.
Some erupted magmas contain <=45% silica and produce lava called ultramafic. Ultramafic flows, also known as komatiites, are very rare; indeed, very few have been erupted at the Earth's surface since the Proterozoic, when the planet's heat flow was higher. They are (or were) the hottest lavas, and probably more fluid than common mafic lavas.

Lava texture
Two types of lava are named according to the surface texture: ʻAʻa (pronounced IPA [ʔaʔa]) and pāhoehoe (pronounced [paːho͡eːho͡eː]), both words having Hawaiian origins. ʻAʻa is characterized by a rough, clinkery surface and is what most viscous and hot lava flows look like. However, even basaltic or mafic flows can be erupted as ʻaʻa flows, particularly if the eruption rate is high and the slope is steep. Pāhoehoe is characterized by its smooth and often ropey or wrinkly surface and is generally formed from more fluid lava flows. Usually, only mafic flows will erupt as pāhoehoe, since they often erupt at higher temperatures or have the proper chemical make-up to allow them to flow at a higher fluidity.

2007-04-02 15:45:15 · answer #4 · answered by Kelly B 2 · 0 0

fedest.com, questions and answers