English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

What are some common neurotransmitters

2007-03-20 07:22:30 · 5 answers · asked by candipants 1 in Social Science Psychology

5 answers

Neurotransmitters are chemicals that are used to relay, amplify and modulate electrical signals between a neuron and another cell. According to the prevailing beliefs of the 1960s, a chemical can be classified as a neurotransmitter if it meets the following conditions:

* It is synthesized endogenously, that is, within the presynaptic neuron;
* It is available in sufficient quantity in the presynaptic neuron to exert an effect on the postsynaptic neuron;
* Externally administered, it must mimic the endogenously-released substance; and
* A biochemical mechanism for inactivation must be present.

However, there are other materials, such as the zinc ion, that are neither synthesized nor catabolized (i.e., degraded; see Anabolism) and are considered neurotransmitters by some. Thus, the old definitions are being revised.

Types of neurotransmitters

There are many different ways to classify neurotransmitters. Often, dividing them into amino acids, peptides, and monoamines is sufficient for many purposes.

Some more precise divisions are as follows:

* Around 10 "small-molecule neurotransmitters" are known:
o acetylcholine
o monoamines (norepinephrine NA, dopamine DA & serotonin 5-HT)
o 3 or 4 amino acids, depending on exact definition used: (primarily glutamic acid, GABA, aspartic acid & glycine)
o Purines, (Adenosine, ATP, GTP and their derivatives)
o Fatty acids are also receiving attention as the potential endogenous cannabinoid.[citation needed]
* Over 50 neuroactive peptides (vasopressin, somatostatin, neurotensin, etc.) have been found, among them hormones such as LH or insulin that have specific local actions in addition to their long-range signalling properties.
* Single ions, such as synaptically-released zinc, are also considered neurotransmitters by some.[citation needed]

The major "workhorse" neurotransmitters of the brain are glutamic acid (=glutamate) and GABA.

[edit] Effects

Some examples of neurotransmitter action:

* Acetylcholine - voluntary movement of the muscles
* Norepinephrine - wakefulness or arousal
* Dopamine - voluntary movement and emotional arousal
* Serotonin - memory, emotions, wakefulness, sleep and temperature regulation
* GABA (gamma aminobutyric acid) - inhibition of motor neurons
* Glycine - spinal reflexes and motor behaviour
* Neuromodulators - sensory transmission-especially pain

It is important to appreciate that it is the receptor that dictates the neurotransmitter's effect.

[edit] Mechanism of action

Within the cells, small-molecule neurotransmitter molecules are usually packaged in vesicles. When an action potential travels to the synapse, the rapid depolarization causes calcium ion channels to open. Calcium then stimulates the transport of vesicles to the synaptic membrane; the vesicle and cell membrane fuse, leading to the release of the packaged neurotransmitter, a mechanism called exocytosis.

The neurotransmitters then diffuse across the synaptic cleft to bind to receptors. The receptors are broadly classified into ionotropic and metabotropic receptors. Ionotropic receptors are ligand-gated ion channels that open or close through neurotransmitter binding. Metabotropic receptors, which can have a diverse range of effects on a cell, transduct the signal by secondary messenger systems, or G-proteins.

Neuroactive peptides are made in the neuron's soma and are transported through the axon to the synapse. They are usually packaged into dense-core vesicles and are released through a similar, but metabolically distinct, form of exocytosis used for small-molecule synaptic vesicles.

[edit] Post-synaptic effect

A neurotransmitter's effect is determined by its receptor. For example, GABA can act on both rapid or slow inhibitory receptors (the GABA-A and GABA-B receptor respectively). Many other neurotransmitters, however, may have excitatory or inhibitory actions depending on which receptor they bind to.

Neurotransmitters may cause either excitatory or inhibitory post-synaptic potentials. That is, they may help the initiation of a nerve impulse in the receiving neuron, or they may discourage such an impulse by modifying the local membrane voltage potential. In the central nervous system, combined input from several synapses is usually required to trigger an action potential. Glutamate is the most prominent of excitatory transmitters; GABA and glycine are well-known inhibitory neurotransmitters.

Many neurotransmitters are removed from the synaptic cleft by neurotransmitter transporters in a process called reuptake (or often simply 'uptake'). Without reuptake, the molecules might continue to stimulate or inhibit the firing of the postsynaptic neuron. Another mechanism for removal of a neurotransmitter is digestion by an enzyme. For example, at cholinergic synapses (where acetylcholine is the neurotransmitter), the enzyme acetylcholinesterase breaks down the acetylcholine. Neuroactive peptides are often removed from the cleft by diffusion, and eventually broken down by proteases.

[edit] Specific actions

While some neurotransmitters (glutamate, GABA, glycine) are used very generally throughout the central nervous system, others can have more specific effects, such as on the Autonomic nervous system, by both pathways in the sympathetic nervous system and the parasympathetic nervous system, and the action of others are regulated by distinct classes of nerve clusters which can be arranged in familar pathways around the brain. For example, Serotonin is released specifically by cells in the brainstem, in an area called the raphe nuclei, but travels around the brain along the medial forebrain bundle activating the cortex, hippocampus, thalamus, hypothalamus and cerebellum. Also, it is released in the Caudal serotonin nuclei, so as to have effect on the spinal cord. In the peripherial nervous system (such as in the gut wall) serotonin regulates vascular tone. Dopamine classically modulates two systems: the brain's reward mechanism, and movement control.

Neurotransmitters that have these types of specific actions are often targeted by drugs. Cocaine, for example, blocks the reuptake of dopamine, leaving these neurotransmitters in the synaptic gap longer. Prozac is a serotonin reuptake inhibitor, hence potentiating its effect. AMPT prevents the conversion of tyrosine to L-DOPA, the precursor to dopamine; reserpine prevents dopamine storage within vesicles; and deprenyl inhibits monoamine oxidase (MAO)-B and thus increases dopamine levels.

Some neurotransmitter/neuromodulators like zinc not only can modulate the sensitivity of a receptor to other neurotransmitters (allosteric modulation) but can even penetrate specific, gated channels in post-synaptic neurons, thus entering the post-synaptic cells. This "translocation" is another mechanism by which synaptic transmitters can affect postsynaptic cells.

Diseases may affect specific neurotransmitter pathways. For example, Parkinson's disease is at least in part related to failure of dopaminergic cells in deep-brain nuclei, for example the substantia nigra. Treatments potentiating the effect of dopamine precursors have been proposed and effected, with moderate success.

[edit] Common neurotransmitters

[edit] Amino acids

* Aspartate
* Glutamate (Glutamic Acid, Glu)
* γ-Aminobutyric acid (GABA)
* Glycine (Gly)

[edit] Acetylcholines

* Acetylcholine (Ach)

[edit] Monoamines

From phenylalanine and tyrosine (catecholamines, in the order of their synthesis):

* Dopamine (DA)
o Norepinephrine (noradrenaline) (NE)
+ Epinephrine (adrenaline) (Epi)
* Octopamine
* Tyramine

From tryptophan:

* Serotonin (5-hydroxytryptamine, 5-HT)
o Melatonin (Mel) (derived from serotonin, but not a monoamine)

From histidine:

* Histamine (H)

[edit] Polypeptides (neuropeptides)

* Bombesin
* Gastrin releasing peptide (GRP)

Gastrins

* Gastrin
* Cholecystokinin (CCK)

Neurohypophyseals

* Vasopressin
* Oxytocin
* Neurophysin I
* Neurophysin II

Neuropeptide Y

* Neuropeptide Y (NY)
* Pancreatic polypeptide (PP)
* Peptide YY (PYY)

Opioids

* Corticotropin (adrenocorticotropic hormone, ACTH)
* Beta-lipotropin
* Dynorphin
* Endorphin
* Enkephaline
* Leumorphin

Secretins

* Secretin
* Motilin
* Glucagon
* Vasoactive intestinal peptide (VIP)
* Growth hormone-releasing factor (GRF)

Somatostatins

* Somatostatin

Tachykinins

* Neurokinin A
* Neurokinin B
* Neuropeptide A
* Neuropeptide gamma
* Substance P

[edit] Other neurotransmitters

* Nitric oxide (NO)
* Carbon monoxide (CO)
* Anandamide
* Adenosine triphosphate (ATP)

2007-03-20 07:29:33 · answer #1 · answered by hsyeda88 1 · 2 0

I was most surprised when I first discovered that neurotransmitters were actually hormones, which as we know can affect mood, perceptions, energy, appetite, sense of self and energy level, to name but a few. Many drugs, such as steroids, are neurotransmitters. Adrenaline, produced by stress, is one we are all very familiar with.

The most widely known by the public are those used in treating depression, such as serotonin. Anti-depressants stop this neurotransmitter from being re-absorbed, thus keeping more of it available to the person and keeping their mood more stable. Unfortunately, there is more that we don't know about those and other chemical messengers (neurotransmitters/hormones) than we do....but it has made a lot of pharmaceutical companies very rich in the meantime.

Dopamine is another "biggie", and is necessary for many of the brain's functions, one of the best known being its effect on Parkinson's disease.

When the brain releases a flood of either of these two, (serotonin and dopamine) in particular, a person will feel great euphoria, and an increase in the feeling that "everything's all right with the world" .....and themselves of course. Many people love this feeling so much, they try to create it artificially with either prescription or street drugs. Then the brain uses up so much of them that the person soon doesn't feel ANYTHING is right in their world unless they take whatever they choose to take more and more frequently ~ hence the start and progression of addiction.

We do know a lot about other neurotransmitters, of course, but those two, for obvious reasons, have received the most attention.

If you just type "neurotransmitters" into your search engine, you will be shown more sites to go to, lists of all the known ones and what each does ~ and find more information than you know what to do with!

2007-03-20 10:24:10 · answer #2 · answered by kathjarq 3 · 0 0

Serotonin, melatonin, adrenalin... Everything that finished by the sound "inn" is a neurotransmitter... It generate or amplify a signal or warned other cells. It is normally produce in the synapse of the nerves, if not they are produce by the liver (epinephrin is one of those), also produce by the hypothalamus and many other organs or organ parts...

2016-03-29 08:42:59 · answer #3 · answered by Anonymous · 0 0

*Serotonin- linked to depression when low in supply. Prozack and other antidepressants increase serotonin levels.

*Dopamine- influences movement, learning, attention, and emotion- malcfunctions in receptors are linked to schizophrenia. When starved of dopamine the brain produces the tremors caused by Parkinson's.

*Norepinephrine- helps control alertness and arousal.

*GABA- undersupplied lieads to seizures, tremors and imnsomnia.

*Acetylcholine- enables muscle action and memory. In Alzheimer's , ACh- producing neurons deteriorate.

2007-03-20 07:30:28 · answer #4 · answered by GC 4 · 0 0

dopamine, serotonin, and estrogens. estrogens are hormone blockers, not hormones themselves, so technically, estrogens are neurotransmitters.

2007-03-20 07:26:05 · answer #5 · answered by rainbow 2 · 0 0

serotonin, dopamine, GABA, epinephrine

2007-03-20 07:25:40 · answer #6 · answered by kittycat 3 · 0 0

fedest.com, questions and answers