Scientists think they know how the universe began, but what happens at the other end of the space—time continuum was a deep, dark mystery—until now
For those who live in a city or near one, the night sky isn't much to look at—just a few scattered stars in a smoggy, washed-out, light-polluted expanse. In rural Maine, though, or the desert Southwest or the high mountains of Hawaii, the view is quite different. Even without a telescope, you can see thousands of stars twinkling in shades of blue, red and yellow-white, with the broad Milky Way cutting a ghostly swath from one horizon to the other. No wonder our ancient ancestors peered up into the heavens with awe and reverence; it's easy to imagine gods and mythical heroes inhabiting such a luminous realm.
Yet for all the magnificence of the visible stars, astronomers know they are only the first shimmering veil in a cosmos vast beyond imagination. Armed with ever more powerful telescopes, these explorers of time and space have learned that the Milky Way is a huge, whirling pinwheel made of 100 billion or more stars; that tens of billions of other galaxies lie beyond its edges; and, most astonishing of all, that these galaxies are rushing headlong away from one another in the aftermath of an explosive cataclysm known as the Big Bang.
That event—the literal birth of time and space some 15 billion years ago—has been understood, at least in its broadest outlines, since the 1960s. But in more than a third of a century, the best minds in astronomy have failed to solve the mystery of what happens at the other end of time. Will the galaxies continue to fly apart forever, their glow fading until the cosmos is cold and dark? Or will the expansion slow to a halt, reverse direction and send 10 octillion (10 trillion billion) stars crashing back together in a final, apocalyptic Big Crunch, the mirror image of the universe's explosive birth? Despite decades of observations with the most powerful telescopes at their disposal, astronomers simply haven't been able to decide.
But a series of remarkable discoveries announced in quick succession starting this spring has gone a long way toward settling the question once and for all. Scientists who were betting on a Big Crunch liked to quote the poet Robert Frost: "Some say the world will end in fire,/ some say in ice./ From what I've tasted of desire/ I hold with those who favor fire." Those in the other camp preferred T.S. Eliot: "This is the way the world ends/ Not with a bang but a whimper." Now, using observations from the Sloan Digital Sky Survey in New Mexico, the orbiting Hubble Space Telescope, the mammoth Keck Telescope in Hawaii and sensitive radio detectors in Antarctica, the verdict is in: T.S. Eliot wins.
For that reason alone, the latest news from space would be profoundly significant; understanding where we came from and where we are headed have been obsessions of thinking humans, probably for as long as we've walked the earth. But the particulars of these discoveries shed light on even deeper mysteries of the cosmos, lending powerful support to radical ideas once considered speculative at best. For one thing, the new observations bolster the theory of inflation: the notion that the universe went through a period of turbocharged expansion before it was a trillionth of a second old, flying apart (in apparent, but not actual, contradiction of Albert Einstein's theories of relativity) faster than the speed of light.
An equally bizarre implication is that the universe is pervaded with a strange sort of "antigravity," a concept originally proposed by and later abandoned by Einstein as the greatest blunder of his life. This force, which has lately been dubbed "dark energy," isn't just keeping the expansion from slowing down, it's making the universe fly apart faster and faster all the time, like a rocket ship with the throttle wide open.
It gets stranger still. Not only does dark energy swamp ordinary gravity but an invisible substance known to scientists as "dark matter" also seems to outweigh the ordinary stuff of stars, planets and people by a factor of 10 to 1. "Not only are we not at the center of the universe," University of California, Santa Cruz, astrophysical theorist Joel Primack has commented, "we aren't even made of the same stuff the universe is."
These mind-bending discoveries raise more questions than they answer. For example, just because scientists know dark matter is there doesn't mean they understand what it really is. Same goes for dark energy. "If you thought the universe was hard to comprehend before," says University of Chicago astrophysicist Michael Turner, "then you'd better take some smart pills, because it's only going to get worse."
ECHO OF THE BIG BANG
Things seemed a lot simpler back in 1965 when two astronomers at Bell Labs in Holmdel, N.J., provided a resounding confirmation of the Big Bang theory, at the time merely one of several ideas floating around on how the cosmos began. The discovery happened purely by accident: Arno Penzias and Robert Wilson were trying to get an annoying hiss out of a communications antenna, and after ruling out every other explanation—including the residue of bird droppings—they decided the hiss was coming from outer space.
Unbeknownst to the duo, physicists at nearby Princeton University were about to turn their own antenna on the heavens to look for that same signal. Astronomers had known since the 1920s that the galaxies were flying apart. But theorists had belatedly realized a key implication: the whole cosmos must at one point have been much smaller and hotter. About 300,000 years after the instant of the Big Bang, the entire visible universe would have been a cloud of hot, incredibly dense gas, not much bigger than the Milky Way is now, glowing white hot like a blast furnace or the surface of a star. Because this cosmic glow had no place to go, it must still be there, albeit so attenuated that it took the form of feeble microwaves. Penzias and Wilson later won the Nobel Prize for the accidental discovery of this radio hiss from the dawn of time.
The discovery of the cosmic-microwave background radiation convinced scientists that the universe really had sprung from an initial Big Bang some 15 billion years ago. They immediately set out to learn more. For one thing, they began trying to probe this cosmic afterglow for subtle variations in intensity. It's clear throughout ordinary telescopes that matter isn't spread evenly through the modern universe. Galaxies tend to huddle relatively close to one another, dozens or even hundreds of them in clumps known as clusters and superclusters. In between, there is essentially nothing at all.
That lumpiness, reasoned theorists, must have evolved from some original lumpiness in the primordial cloud of matter that gave rise to the background radiation. Slightly denser knots of matter within the cloud—forerunners of today's superclusters should have been slightly hotter than average. So scientists began looking for subtle hot spots.
FIRE OR ICE?
Others, meanwhile, attacked a different aspect of the problem. As the universe expands, the combined gravity from all the matter within it tends to slow that expansion, much as the earth's gravity tries to pull a rising rocket back to the ground. If the pull is strong enough, the expansion will stop and reverse itself; if not, the cosmos will go on getting bigger, literally forever. Which is it? One way to find out is to weigh the cosmos—to add up all the stars and all the galaxies, calculate their gravity and compare that with the expansion rate of the universe. If the cosmos is moving at escape velocity, no Big Crunch.
Trouble is, nobody could figure out how much matter there actually was. The stars and galaxies were easy; you could see them. But it was noted as early as the 1930s that something lurked out there besides the glowing stars and gases that astronomers could see. Galaxies in clusters were orbiting one another too fast; they should, by rights, be flying off into space like untethered children flung from a fast-twirling merry-go-round. Individual galaxies were spinning about their centers too quickly too; they should long since have flown apart. The only possibility: some form of invisible dark matter was holding things together, and while you could infer the mass of dark matter in and around galaxies, nobody knew if it also filled the dark voids of space, where its effects would not be detectable.
So astrophysicists tried another approach: determine whether the expansion was slowing down, and by how much. That's what Brian Schmidt, a young astronomer at the Mount Stromlo Observatory in Australia, set out to do in 1995. Along with a team of colleagues, he wanted to measure the cosmic slowdown, known formally as the "deceleration parameter." The idea was straightforward: look at the nearby universe and measure how fast it is expanding. Then do the same for the distant universe, whose light is just now reaching us, having been emitted when the cosmos was young. Then compare the two.
Schmidt's group and a rival team led by Saul Perlmutter, of Lawrence Berkeley Laboratory in California, used very similar techniques to make the measurements. They looked for a kind of explosion called a Type Ia supernova, occurring when an aging star destroys itself in a gigantic thermonuclear blast. Type Ia's are so bright that they can be seen all the way across the universe and are uniform enough to have their distance from Earth accurately calculated. That's key: since the whole universe is expanding at a given rate at any one time, more distant galaxies are flying away from us faster than nearby ones. So Schmidt's and Perlmutter's teams simply measured the distance to these supernovas (deduced from their brightness) and their speed of recession (deduced by the reddening of their light, a phenomenon affecting all moving bodies, known to physicists as the Doppler shift). Combining these two pieces of information gave them the expansion rate, both now and in the past
2007-03-21 01:09:03
·
answer #1
·
answered by Anonymous
·
1⤊
0⤋