English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Solve for cos(pi/12)
All help appreciated.
Thx in advance.

2007-03-18 03:42:02 · 3 answers · asked by Bob F 1 in Science & Mathematics Mathematics

3 answers

pi/12 = pi/3 - pi/4

cos pi/3 = 1/2
sin pi/3 = sqrt(3)/2

cos pi/4 = sin pi/4 = sqrt(2)/2

cos (pi/12) = cos pi/3 cos pi/4 + sin pi/3 sin pi/4
= (sqrt(2)/2)( 1+ sqrt(3))/2 = (1+sqrt(3)/(2sqrt(2))

2007-03-18 03:46:28 · answer #1 · answered by Mein Hoon Na 7 · 0 0

We know that pi/6 or 30degrees is the angle in a right angled triangle with sides of 1, 2, sqrt3. Therefore sin(pi/6) = 1/2 and cos(pi/6) = (sqrt3)/2. You therefore need to use the double angle formulas for cos or sin to break one of these up into pi/12. (Hint cos is easier.)

2007-03-18 10:49:23 · answer #2 · answered by mathsmanretired 7 · 0 0

cos (pi/6 -pi/4)= cos(pi/6)cos(pi/4)+sin(pi/6)sin(pi/4)
=(√3/2)(1/√2)+(1/2)(1/√2)
=(√3+1)/2√2
rationalize
= (√6+√2)/4

2007-03-18 10:50:57 · answer #3 · answered by Maths Rocks 4 · 0 0

fedest.com, questions and answers