Integral ( sin^3(2x) cos^3(2x) dx )
First, break off a cos(2x).
Integral ( sin^3(2x) cos^2(2x) cos(2x) dx )
Use the identity cos^2(y) = 1 - sin^2(y).
Integral ( sin^3(2x) (1 - sin^2(2x)) cos(2x) dx)
Now, use substitution.
Let u = sin(2x). Then
du = 2cos(2x) dx, so
(1/2) du = cos(2x) dx.
Note that the tail end of our integral is cos(2x) dx, so the tail end after the substitution will be (1/2) du.
Integral ( u^3 (1 - u^2) (1/2) du )
Pull the constant (1/2) out,
(1/2) Integral ( u^3 (1 - u^2) du )
Expand.
(1/2) Integral ( (u^3 - u^5) du )
Now, integrate using the reverse power rule.
(1/2) [ (1/4)u^4 - (1/6)u^6 ] + C
Distribute the (1/2),
(1/8)u^4 - (1/12)u^6 + C
Substitute back u = sin(2x),
(1/8)sin^4(2x) - (1/12)sin^6(2x) + C
2007-03-16 04:44:07
·
answer #1
·
answered by Puggy 7
·
0⤊
0⤋