English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-03-12 22:19:38 · 3 answers · asked by wendywei85 3 in Science & Mathematics Mathematics

3 answers

You can rewrite
a^x = exp(ln(a^x)) = exp(ln(a)·x)

Therefore the integral is
∫ a^x dx = ∫ exp(ln(a)·x) dx = exp(ln(a)·x)/lna = a^x / ln(a)

2007-03-12 22:38:57 · answer #1 · answered by schmiso 7 · 1 0

Since e^(ln a) = a

∫ a^x dx = ∫ e^[(ln a)x] dx

u = (ln a) x
du = (ln a) dx

Substitute:

∫e^u [du/(ln a)] =

1/(ln a) ∫ e^u du

Solve:

1/(ln a) [e^u + C]

Substitute u = (ln a) x back into the equation:

1/(ln a) {e^[(ln a)x]} + C

1/(ln a) a^x + C =

Final answer:

(a^x)/(ln a) + C

2007-03-13 05:27:19 · answer #2 · answered by Chris H 4 · 1 2

we know d/dx(a^x) = a^x( in a)

integrate both sides a^x = int (a^x)( in a)

or int a^x = a^x/(In a) + C

2007-03-13 06:35:30 · answer #3 · answered by Mein Hoon Na 7 · 0 2

fedest.com, questions and answers