English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

prove the identity

2007-03-08 15:29:16 · 3 answers · asked by spunkballa 2 in Science & Mathematics Geography

3 answers

I assume you mean
sinø/(1 - cosø) - cotø = cscø

Prove the identity. Let's work with the left hand side.

Left Hand Side = sinø/(1 - cosø) - cotø
= sinø/(1 - cosø) - cosø/sinø
= sinø(1 + cosø)/[(1 - cosø)(1 + cosø)] - cosø/sinø
= sinø(1 + cosø)/(1 - cos²ø) - cosø/sinø
= sinø(1 + cosø)/sin²ø - cosø/sinø
= (1 + cosø)/sinø - cosø/sinø
= (1 + cosø - cosø)/sinø
= 1/sinø = cscø = Right Hand Side

2007-03-08 17:44:34 · answer #1 · answered by Northstar 7 · 0 0

I suppose this is:
[Sinø/(1-cosø)]-cotø
= sinø/(1-cosø) - cosø/sinø
= (sin^2 ø-cosø+cos^2ø)/(sinø-sincosø)
= (1-cosø)/sinø(1-cosø)
=1/sinø
=cscø

2007-03-08 15:36:40 · answer #2 · answered by Maths Rocks 4 · 0 0

sin@/1-cos@ - (cot@) .. now cot@ = cos@/sin@
sin@/1-cos@ - (cos@/sin@)......... adding them like a fraction
(sin^2@ - cos@ +cos^2@)/sin@(1-cos@)
but sin^2@ + cos^2@ = 1
so
(1-cos@)/sin@(1-cos@)..... cancel both (1-cos@)
1/sin@
=csc@

2007-03-08 15:47:39 · answer #3 · answered by Southpaw 5 · 0 0

fedest.com, questions and answers