Yes.
Working just with the left side:
First, multiply through the parentheses. You then have:
cos A cos^2 B - sin A sin B cos B
+ sin A sin B cos B + cos A sin^2 B
notice the middle two terms cancel each other out, so you're left with:
cos A cos^2 B + cos A sin^2 B
factor out the cos A
cos A (cos^2 B + sin^2 B)
remember the identity cos^2 B + sin^2 B = 1,
so you have:
cos A (1) = cos A
2007-03-07 01:35:33
·
answer #1
·
answered by Mathematica 7
·
0⤊
0⤋
Sure. LHS = cos(A+B)cosB + sin(A+B)sinB = cos ((A+B)-B) = cosA
2007-03-07 10:36:01
·
answer #2
·
answered by Curt Monash 7
·
0⤊
0⤋
(cosA cosB-sinA sinB)cosB+(sinAcosB+cosA sin B)sinB
=cos(A+B)cosB+sin(A+B)sinB
=cos(A+B-B)
=cosA
because cosA cosB-sinAsinB=cos(A+B)
sinAcosB+cosAsinB=sin(A+B)
cosAcosB+sinAsinB=sin(A-B)
2007-03-07 09:39:55
·
answer #3
·
answered by Vinay C 1
·
0⤊
0⤋
yes
Using
Cos(A+B) = Cos(A)Cos(B) - Sin(A)Sin(B)
and
Sin(A+B) = Sin(A)Cos(B) + Cos(A)Sin(B)
Cos(A+B)Cos(B) + Sin(A+B)Sin(B) = Cos((A+B)-B) = Cos(A)
Cos(A) = Cos(A)
(oops, got the sign backward the first time around)
The tricky ones are the Cos(A+B) and Cos(A-B) identities, where the signs are reversed:
Cos(A+B) = Cos(A)Cos(B) MINUS Sin(A)Sin(B)
Cos(A-B) = Cos(A)Cos(B) PLUS Sin(A)Sin(B)
In the case of Sines, it is the order that could be tricky:
Sin(A+B) = Sin(A)Cos(B) + Cos(A)Sin(B)
Sin(A-B) = Sin(A)Cos(B) - Cos(A)Sin(B)
Cos is CosCos SinSin, change the sign
Sin is SinCos CosSin, same sign
2007-03-07 09:30:34
·
answer #4
·
answered by Raymond 7
·
0⤊
0⤋