English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

y = x(2^(−4x))

f(x) = (x − 3)e^(4x)

2007-03-03 16:19:21 · 3 answers · asked by Diggler AKA The Cab Driver 1 in Science & Mathematics Mathematics

3 answers

x*(-4*2^(-4x)*ln(2))+2^(-4x)
and the second one is: (x-3)*e^(4x)*4+e^(4x)

(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)

2007-03-03 16:29:50 · answer #1 · answered by WSS 2 · 0 1

for the first let u= x and v= (2^(-4x)

the derivative of u or du = 1
the derivative of v or dv = -4ln(2)*2^(-4x)

The formula is v * du + u * dv

substitute u, du, v, and dv
(2^(-4x) * 1 + x * -4ln(2)*2^(-4x)

Repeat the same process for the second by letting
u = (x-3) and v = e^(4x)

2007-03-03 16:30:48 · answer #2 · answered by PZ 4 · 0 0

y = x(2^(−4x))
y= x(2^-4x)
y' = (1)(2^-4x)+x(2^-4x) ln 2 (-4)
y' =2^-4x -4x(2^-4x)ln2

f(x) = (x − 3)e^(4x)
f'(x) = (x-3)(4e^(4x)) + e^(4x)= 4xe^4x - 11e^4x

2007-03-03 16:42:39 · answer #3 · answered by ironduke8159 7 · 0 0

fedest.com, questions and answers