English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

6 answers

(sinA-cosA-sin^3A)/sinA
=1-cotA-sin^2A
=(1-sin^2A)-cotA
=cos^2A-cotA

2007-02-28 00:31:58 · answer #1 · answered by runningman022003 7 · 0 0

(sin ß - cos ß - sin^3 ß)/sin ß = cos² ß - cot ß

LHS:
(sin ß - cos ß - sin^3 ß)/sin ß
As the expression staes, divide all 3 terms of the numerator by sin ß
=1-cot ß- sin² ß
=1-cot ß-(1-cos² ß)
=1-cot ß-1+cos² ß
=cos² ß- cot ß
=RHS

Note that the identity
sin² ß+cos² ß=1 should be known.
Thus, sin² ß= 1-cos² ß

2007-02-28 08:37:48 · answer #2 · answered by tabletennisrulez 2 · 0 0

(sin ß - cos ß - sin^3 ß)/sin ß = cos² ß - cot ß

Simplify the left side.

1 - (cos ß/sin ß) - sin^2 ß = cos² ß - cot ß

1 - cot ß - sin^2 ß = cos² ß - cot ß

Regroup terms.

(1 - sin^2 ß) - cot ß = cos² ß - cot ß

cos^2 ß - cot ß = cos² ß - cot ß

2007-02-28 08:32:51 · answer #3 · answered by Anonymous · 0 0

So simple!

(sin ß - cos ß - sin^3 ß)/sin ß
= sin ß / sin ß - cos ß / sin ß - sin^3 ß/sin ß
= 1 - cot ß - sin^2 ß
= ( 1 - sin^2 ß ) - cot ß
= cos^2 ß - cot ß

Rite?

2007-02-28 08:32:21 · answer #4 · answered by ? 2 · 1 0

(sin(ß) - cos(ß) - sin(ß)^3)/(sin(ß)) Divide each term.
1 - cot(ß) - sin²(ß) Now remember cos²(ß) + sin²(ß) = 1
so sin²(ß) = 1 - cos²(ß) and
1 - cot(ß) - (1 - cos²(ß)) is
cos²(ß) - cot(ß) QED

HTH ☺

Doug

2007-02-28 08:33:07 · answer #5 · answered by doug_donaghue 7 · 0 0

(sin x - cos x - sin^3 x)/ sin x = [(sin x)(1-sin^2 x) - cos x] /sin x =

= 1 - sin^2 x - (cos x)/(sin x) = cos^2 x - cot x

2007-02-28 08:32:41 · answer #6 · answered by Amit Y 5 · 0 0

fedest.com, questions and answers