(sinA-cosA-sin^3A)/sinA
=1-cotA-sin^2A
=(1-sin^2A)-cotA
=cos^2A-cotA
2007-02-28 00:31:58
·
answer #1
·
answered by runningman022003 7
·
0⤊
0⤋
(sin à - cos à - sin^3 Ã)/sin à = cos² à - cot Ã
LHS:
(sin à - cos à - sin^3 Ã)/sin Ã
As the expression staes, divide all 3 terms of the numerator by sin Ã
=1-cot Ã- sin² Ã
=1-cot Ã-(1-cos² Ã)
=1-cot Ã-1+cos² Ã
=cos² Ã- cot Ã
=RHS
Note that the identity
sin² Ã+cos² Ã=1 should be known.
Thus, sin² Ã= 1-cos² Ã
2007-02-28 08:37:48
·
answer #2
·
answered by tabletennisrulez 2
·
0⤊
0⤋
(sin à - cos à - sin^3 Ã)/sin à = cos² à - cot Ã
Simplify the left side.
1 - (cos Ã/sin Ã) - sin^2 à = cos² à - cot Ã
1 - cot à - sin^2 à = cos² à - cot Ã
Regroup terms.
(1 - sin^2 Ã) - cot à = cos² à - cot Ã
cos^2 à - cot à = cos² à - cot Ã
2007-02-28 08:32:51
·
answer #3
·
answered by Anonymous
·
0⤊
0⤋
So simple!
(sin à - cos à - sin^3 Ã)/sin Ã
= sin à / sin à - cos à / sin à - sin^3 Ã/sin Ã
= 1 - cot à - sin^2 Ã
= ( 1 - sin^2 Ã ) - cot Ã
= cos^2 Ã - cot Ã
Rite?
2007-02-28 08:32:21
·
answer #4
·
answered by ? 2
·
1⤊
0⤋
(sin(Ã) - cos(Ã) - sin(Ã)^3)/(sin(Ã)) Divide each term.
1 - cot(Ã) - sin²(Ã) Now remember cos²(Ã) + sin²(Ã) = 1
so sin²(Ã) = 1 - cos²(Ã) and
1 - cot(Ã) - (1 - cos²(Ã)) is
cos²(Ã) - cot(Ã) QED
HTH âº
Doug
2007-02-28 08:33:07
·
answer #5
·
answered by doug_donaghue 7
·
0⤊
0⤋
(sin x - cos x - sin^3 x)/ sin x = [(sin x)(1-sin^2 x) - cos x] /sin x =
= 1 - sin^2 x - (cos x)/(sin x) = cos^2 x - cot x
2007-02-28 08:32:41
·
answer #6
·
answered by Amit Y 5
·
0⤊
0⤋