English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

5 answers

Use the binomial theorem to expand and simplify to the 3rd power?

Since (a - b)^n = a^n - nC1 a^(n-1) b + nC2 a6(n-2) b^2 + ......... +(-1)^(r-1) nCr a^(n - r) b^r + ..... + (-1)^(n-1) nC(n - 1) a b^(n - 1) + (-1)^(n)b^n

Then (a - b)^3 = a^3 - 3a^2 * b + 3ab^2 - b ^3

Hence (4x-y)^3 = (4x)^3 - 3(4x)^2 * y + 3x(y)^2 - y^3

= 64x^3 -48x^2 y + 3xy^2 - y^3

2007-02-27 22:03:20 · answer #1 · answered by Wal C 6 · 0 0

Use the binomial theorem to expand and simplify (4x-y) raised to the 3rd power.

(4x - y)³ = (4x)³ - 3(4x)²y + 3(4x)y² - y³
= 64x³ - 48x²y + 12xy² - y³

2007-02-28 06:18:12 · answer #2 · answered by Northstar 7 · 0 0

(4x-y)^3 =(4x)^3 -(y)^3 - 3(4x)^2(y) +3(4x)(y)^2



i eva hate binomials
but i did it for you now solve powers urself

2007-02-28 06:05:48 · answer #3 · answered by Anonymous · 0 1

(4x - y)^3 =
(4x)^3 + (3C1)(4x)^2(-y) + (3C2)(4x)(-y)^2 + (3C3)(-y)^3 =
64x^3 - 3*16x^2y + 3*4xy^2 - 1y^3 =
64x^3 - 48x^2y + 12xy^2 - y^3

2007-02-28 06:16:35 · answer #4 · answered by Helmut 7 · 0 0

64x^3-48yx^2+9xy^2+y^3

2007-03-04 02:19:42 · answer #5 · answered by Anonymous · 0 0

fedest.com, questions and answers