English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

(cot^2ø+cscø+1)/(cotø+tanø) = (cotø+cosø)

2007-02-12 20:03:31 · 2 answers · asked by turnip_heart331 2 in Science & Mathematics Mathematics

2 answers

Establish the identity.

(cot²ø + cscø + 1)/(cotø + tanø) = (cotø + cosø)

We will work with the left hand side.

(cot²ø + cscø + 1)/(cotø + tanø)
= (csc²ø + cscø)/(cotø + tanø)
= (1/sin²ø + 1/sinø)/(cosø/sinø + sinø/cosø)
= (cosø/sinø + cosø)/(cos²ø + sin²ø)
= (cosø/sinø + cosø)/1
= cotø + cosø = Right hand side

2007-02-12 20:43:24 · answer #1 · answered by Northstar 7 · 0 0

You mean, prove this identity? Start with the left side:

(cot² θ + cscθ + 1) / (cotθ + tanθ) =
((cos² θ / sin² θ) + cscθ + 1) / (cotθ + tanθ) =
(cos² θ + sin² θ cscθ + sin² θ) / [(sin² θ)(cotθ + tanθ)] =
(1 + sin² θ cscθ) / [(sin² θ)(cotθ + tanθ)] =
(1 + sin² θ / sinθ) / [(sin² θ)(cotθ + tanθ)] =
(1 + sin θ) / [(sin² θ)(cotθ + tanθ)] =
(1 + sin θ) / [(sin² θ)(cosθ/sinθ + tanθ)] =
(1 + sin θ) / [(sinθcosθ + sin² θ tanθ)] =
1/[(sinθcosθ + sin² θ tanθ)] + (sin θ)/[(sinθcosθ + sin² θ tanθ)] =
1/[(sinθcosθ + sin² θ tanθ)] + 1/[(cosθ + sin θ tanθ)] =
1/[(sinθcosθ + sin² θ tanθ)] + 1/[(cosθ + sin θ (sinθ/cosθ)] =
1/[(sinθcosθ + sin² θ tanθ)] + cosθ/(cos²θ + sin²θ) =
1/[(sinθcosθ + sin² θ tanθ)] + cosθ =
1/[(sinθcosθ + sin² θ (sinθ/cosθ)] + cosθ =
cosθ / [(sinθcos²θ + sin³ θ] + cosθ =
cosθ / [sinθ(cos²θ + sin²θ)] + cosθ =
cosθ/sinθ + cosθ =
cot θ + cos θ

2007-02-13 04:44:11 · answer #2 · answered by Anonymous · 0 0

fedest.com, questions and answers