English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

For y=f(k*x);K>0
please explain what this does to the graphs x^2 and x^3 and write a rule for this, then prove the rule

thank you

2007-02-10 17:44:01 · 3 answers · asked by cheesey thug 1 in Science & Mathematics Mathematics

3 answers

F = x^2

F1 =k^2x^2

for 0 for K=1 the graph F1 will be equal to the graph F
for K>1 the graph F1 will be above the graph F

prove of the rule : F(x) < F2(x) for all x
0 K^2 * x^2 since 0
well i am not going to write this out way too trivial for a math expert


x^3 idemdito

2007-02-10 17:48:32 · answer #1 · answered by gjmb1960 7 · 2 0

For y = x^2 it multplies the ordinates by k^2
for y=x^3 it multiplies the ordiniates by k^3 and if y=x^n the multiplication factor is k^n
f(x) = x^n f(kx) = (kx)^n = k^n *x^n = k^n * f(x)

2007-02-11 12:26:56 · answer #2 · answered by santmann2002 7 · 0 0

gjmb1960 has given the right answer.

2007-02-11 01:53:42 · answer #3 · answered by Mritunjay 2 · 1 0

fedest.com, questions and answers