English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

If: x+y=a , x^2 + y^2=b and x^3 + y^3= c
prove that:
a^3=3ab-2c

2007-02-08 00:22:03 · 3 answers · asked by Crystal 3 in Science & Mathematics Mathematics

3 answers

We have x+y=a,x^2+y^2=b and x^3+y^3=c
Therefore 2xy=(x+y)^2-(x^2+y^2)
=a^2-b
Therefore xy=(a^2-b)/2and 3xy={3(a^2-b)/2
=(3a^2-3b)/2
a^3=(x+y)^3
=x^3+y^3+3xy(x+y)
=c+{(3a^2-3b)/2}*a
=c+(3a^3-3ab)/2
=(2c+3a^3-3ab)/2
Multiplying both sides by 2 we get,
2a^3=2c+3a^3-3ab
=>2a^3-3a^3=2c-3ab
=> -a^3=2c-3ab
=>a^3=3ab-2c

2007-02-08 00:57:15 · answer #1 · answered by alpha 7 · 1 0

Substitute a for x + y, b for x^2 + y^2 and c for x^3 + y^3
(x+y)³ = 3(x+y)(x²+y²) - 2(x³ + y³)

-----
Left part:
Expand (x+y)^3:
x³ + 3x²y + 3xy² + y³
-----
Right part:

Expand 3(x+y)(x²+y²)
3(x³ + x²y + xy² + y³) =
3x³ + 3x²y + 3xy² + 3y³

and then subtract (2x³ + 2y³):
3x³ + 3x²y + 3xy² + 3y³ - 2x³ - 2y³ =
x³ + 3x²y + 3xy² + y³ ... (because 3x³ - 2x³ = x³ and 3y³ - 2y³ = y³)
-----
Left = Right
x³ + 3x²y + 3xy² + y³ = x³ + 3x²y + 3xy² + y³

2007-02-08 08:47:58 · answer #2 · answered by eva 3 · 0 0

a^2=x^2+y^2+2xy
a^2=b+2xy

a^2-b=2xy
xy=(a^2-b)/2


x^3 + y^3= c
(x+y)(x^2+y^2-xy)=c
a.(b-xy)=c
a(b-(a^2-b)/2)=c
2ab-a^3+ab=2c
a^3=3ab-2c

2007-02-08 08:53:27 · answer #3 · answered by iyiogrenci 6 · 0 0

fedest.com, questions and answers