English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

I heard some geneticists on the radio talking about dramatic life extention therapy and it sounded interestin, complex, but interesting...

2007-02-07 06:06:36 · 2 answers · asked by Juan 1 in Science & Mathematics Biology

2 answers

Are you referring to the spindle component genes of the DNA repair pathway? These are genes which encode essential repair enzymes. In theory, improved DNA repair leads to increased cellular integrity and longer life.

2007-02-07 06:27:22 · answer #1 · answered by floundering penguins 5 · 1 1

Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic instructions for the development and function of living organisms. All living things contain DNA, with the exception of some viruses with RNA genomes. The main role of DNA in the cell is the long term storage of information. It is often compared to a blueprint, since it contains the instructions to construct other components of the cell, such as proteins and RNA molecules. The DNA segments that carry genetic information are called genes, but other DNA sequences have structural purposes, or are involved in regulating the expression of genetic information.

In eukaryotes such as animals and plants, DNA is stored inside the cell nucleus, while in prokaryotes such as bacteria, the DNA is in the cell's cytoplasm. Unlike enzymes, DNA does not act directly on other molecules; rather, various enzymes act on DNA and copy its information into either more DNA, in DNA replication, or transcribe it into protein. In chromosomes, chromatin proteins such as histones compact and organize DNA, as well as helping control its interactions with other proteins in the nucleus.

DNA is a long polymer of simple units called nucleotides, which are held together by a backbone made of sugars and phosphate groups. This backbone carries four types of molecules called bases and it is the sequence of these four bases that encodes information. The major function of DNA is to encode the sequence of amino acid residues in proteins, using the genetic code. To read the genetic code, cells make a copy of a stretch of DNA in the nucleic acid RNA. These RNA copies can then be used to direct protein synthesis, but they can also be used directly as parts of ribosomes or spliceosomes.

Alternative double-helical structures
Further information: Mechanical properties of DNA
DNA exists in several possible conformations. The conformations so far identified are: A-DNA, B-DNA, C-DNA, D-DNA,[29] E-DNA,[30] H-DNA,[31] L-DNA,[29] and Z-DNA.[8][32] However, only A-DNA, B-DNA, and Z-DNA are believed to be found in nature. Which conformation DNA adopts depends on the sequence of the DNA, the amount and direction of supercoiling, chemical modifications of the bases and also solution conditions, such as the concentration of metal ions and polyamines.[33] Of these three conformations, the "B" form described above is most common under the conditions found in cells. The two alternative double-helical forms of DNA differ in their geometry and dimensions.

The A form is a wider right-handed spiral, with a shallow and wide minor groove and a narrower and deeper major groove. The A form occurs under non-physiological conditions in dehydrated samples of DNA, while in the cell it may be produced in hybrid pairings of DNA and RNA strands.[34] Segments of DNA where the bases have been methylated may undergo a larger change in conformation and adopt the Z form. Here, the strands turn about the helical axis in a left-handed spiral, a mirror image of the more common B form.[35]


Structure of a DNA quadruplex formed by telomere repeats.[36]
Quadruplex structures
At the ends of the linear chromosomes are specialized regions of DNA called telomeres. The main function of these regions is to allow the cell to replicate chromosome ends using the enzyme telomerase, as normal DNA polymerases working on the lagging strand cannot copy the extreme 3' ends of their DNA templates.[37] If a chromosome lacked telomeres it would become shorter each time it was replicated. These specialized chromosome caps also help protect the DNA ends from exonucleases and stop the DNA repair systems in the cell from treating them as damage to be corrected.[38] In human cells, telomeres are usually lengths of single-stranded DNA containing several thousand repeats of a simple TTAGGG sequence.[39]

These guanine-rich sequences may stabilise chromosome ends by forming very unusual quadruplex structures. Here, four guanine bases form a flat plate, through hydrogen bonding, and these flat four-base units then stack on top of each other, to form a stable quadruplex.[40] These structures are often stabilized by chelation of a metal ion in the centre of each four-base unit. The structure shown to the left is of a quadruplex formed by a DNA sequence containing four consecutive human telomere repeats. The single DNA strand forms a loop, with the sets of four bases stacking in a central quadruplex three plates deep. In the space at the centre of the stacked bases are three chelated potassium ions.[41] Other structures can also be formed and the central set of four bases can come from either one folded strand, or several different parallel strands.

In addition to these stacked structures, telomeres also form large loop structures called telomere loops, or T-loops. Here, the single-stranded DNA curls around in a circle stabilized by telomere-binding proteins.[42] The very end of the T-loop, the single-stranded telomere DNA is held onto a region of double-stranded DNA by the telomere strand disrupting the double-helical DNA and base pairing to one of the two strands. This triple-stranded structure is called a displacement loop or D-loop.[40]

2007-02-07 06:22:42 · answer #2 · answered by THE UNKNOWN 5 · 0 2

fedest.com, questions and answers