English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

A chord of length 1 is made to slide around the inside of an ellipse. Its midpoint traces out another convex curve inside the ellipse. Find the area between the two.

Okay, if you need to know, the ellipse's major diameter is 10 and minor diameter is 5.

2007-02-06 04:59:17 · 1 answers · asked by Scythian1950 7 in Science & Mathematics Mathematics

1 answers

Let x^2 / a^2 + y^2 /b^2 = 1

(x1, y1) = (X,Y) + (u,v)
(x2, y2) = (X,Y) - (u,v)

where
x1^2 / a^2 + y1^2 /b^2 = 1 (1)
x2^2 / a^2 + y2^2 /b^2 = 1 (2)
u^2 + v^2 = d^2. (3)


(1) - (2) :
Xu / a^2 + Yv / b^2 = 0
Let (X,Y) = R(a cos t, b sin t), then
u cos t + v sin t = 0, and combined with (3) we have

u = d sin t
v = -d cos t

(1) + (2):
R^2 (cos^2 t + sin^2 t ) + d^2 (sin^2 t / a^2 + cos^2 t / b^2) = 1, or
R^2 = 1 - d^2 (sin^2 t / a^2 + cos^2 t / b^2).

dR = - d^2/2R sin 2t (1/a^2 - 1/b^2) dt
dY = b(R d sin t + dR cos t) =
b (R cos t - d^2/2R sin 2t (1/a^2 - 1/b^2) cos t) dt

Area = integral of X dY =
ab int [ R^2 cos^2 t - d^2/2 sin 2t cos^2 t (1/a^2 - 1/b^2)] dt =

ab int [cos^2 t dt] -
abd^2 int [(sin^2 t / a^2 + cos^2 t / b^2) cos^2 t dt] -
abd^2/2 int [sin 2t cos^2 t (1/a^2 - 1/b^2)) dt ] =

********************* ***********************
S_ellipse( 1 - d^2/2 (1/a^2 + 1/b^2))
********************* ***********************

a = 5/2, b = 10/2, d = 1/2

S = 195/16 pi

2007-02-06 09:32:00 · answer #1 · answered by Alexander 6 · 2 0

fedest.com, questions and answers