ln (a^(ln x)) = (ln x) (ln a)
So a^(ln x) = x^(ln a)
and therefore ∫ a^(ln x) dx
= ∫ x^(ln a) dx
= x^(ln a + 1) / (ln a + 1) + c.
which we can also write as
x . x^(ln a) / (ln a + 1) + c
= x a^(ln x) / (ln a + 1) + c.
2007-02-05 19:45:25
·
answer #1
·
answered by Scarlet Manuka 7
·
0⤊
0⤋
Integrate a^(ln x) with respect to x.
First rearrange the terms to make it easier to integrate.
y = a^(ln x)
ln y = ln{a^(ln x)} = ln(x)*ln(a) = ln{x^(ln a)}
y = x^(ln a)
Therefore
a^(ln x) = x^(ln a)
Now we can integrate.
â«a^(ln x)dx = â«x^(ln a)dx = x^((ln a) + 1)/((ln a) + 1) + C
= (x)x^(ln a)/((ln a) + 1) + C
= xa^(ln x)/((ln a) + 1) + C
2007-02-06 05:48:39
·
answer #2
·
answered by Northstar 7
·
0⤊
0⤋
y=a^(lnx) = x^ln(a); Y=â«x^ln(a)dx= x^(ln(a)+1) /(ln(a)+1)+C, unless a=1/e;
if a=1/e then Y=lnx +C;
2007-02-06 04:18:50
·
answer #3
·
answered by Anonymous
·
0⤊
0⤋
(x a^In(x)) / (1+In(a))
2007-02-06 03:39:58
·
answer #4
·
answered by Scythian1950 7
·
0⤊
0⤋
Int(a^(lnx)dx)=
=Int(x'*a^(lnx)dx)=
=x*a^(lnx)-Int(x*(a^lnx)'dx)=
=x*a^(lnx)-Int(x*(a^lnx)*lna*1/xdx)=
=x*a^(lnx)-lna*Int((a^lnx)dx)
so,
(1+lna)Int((a^lnx)dx)=x*a^(lnx)
Int((a^lnx)dx)=
=(x^a^(lnx))/(1+lna)+C
2007-02-06 04:15:56
·
answer #5
·
answered by happyrabbit 2
·
0⤊
0⤋