English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-02-05 19:35:35 · 5 answers · asked by Anonymous in Science & Mathematics Mathematics

5 answers

ln (a^(ln x)) = (ln x) (ln a)
So a^(ln x) = x^(ln a)
and therefore ∫ a^(ln x) dx
= ∫ x^(ln a) dx
= x^(ln a + 1) / (ln a + 1) + c.

which we can also write as
x . x^(ln a) / (ln a + 1) + c
= x a^(ln x) / (ln a + 1) + c.

2007-02-05 19:45:25 · answer #1 · answered by Scarlet Manuka 7 · 0 0

Integrate a^(ln x) with respect to x.

First rearrange the terms to make it easier to integrate.

y = a^(ln x)
ln y = ln{a^(ln x)} = ln(x)*ln(a) = ln{x^(ln a)}
y = x^(ln a)

Therefore
a^(ln x) = x^(ln a)

Now we can integrate.

∫a^(ln x)dx = ∫x^(ln a)dx = x^((ln a) + 1)/((ln a) + 1) + C
= (x)x^(ln a)/((ln a) + 1) + C
= xa^(ln x)/((ln a) + 1) + C

2007-02-06 05:48:39 · answer #2 · answered by Northstar 7 · 0 0

y=a^(lnx) = x^ln(a); Y=∫x^ln(a)dx= x^(ln(a)+1) /(ln(a)+1)+C, unless a=1/e;
if a=1/e then Y=lnx +C;

2007-02-06 04:18:50 · answer #3 · answered by Anonymous · 0 0

(x a^In(x)) / (1+In(a))

2007-02-06 03:39:58 · answer #4 · answered by Scythian1950 7 · 0 0

Int(a^(lnx)dx)=
=Int(x'*a^(lnx)dx)=
=x*a^(lnx)-Int(x*(a^lnx)'dx)=
=x*a^(lnx)-Int(x*(a^lnx)*lna*1/xdx)=
=x*a^(lnx)-lna*Int((a^lnx)dx)

so,
(1+lna)Int((a^lnx)dx)=x*a^(lnx)
Int((a^lnx)dx)=
=(x^a^(lnx))/(1+lna)+C

2007-02-06 04:15:56 · answer #5 · answered by happyrabbit 2 · 0 0

fedest.com, questions and answers