English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

. . . . . . . . . . . . .x
If f(x) = ∫ ln (tan t) dt, what is f ''(x) ?
. . . . .. . . . . . . . . a

_________________________________________

These were possible solutions....

a. ln (sin x)

b. ln (cos x)

c. tan x

d. cot x

e. - tan x

f. - cot x

g. (sec x)(csc x)

h. - (sec x)(csc x)

or none of these

2007-02-03 02:53:14 · 3 answers · asked by Olivia 4 in Science & Mathematics Mathematics

3 answers

f'(x)=ln(tan t)
f"(x)=sec^2t/(tan t)
Ans: g)(sec t)(csc t)

2007-02-03 03:03:10 · answer #1 · answered by Maths Rocks 4 · 1 0

I suppose you mean, f(t), then
f'(t) = ln (tan t)
f''(t) = (1/tan t) . sec^2 t = sin t . sec^3 t

I believe. If it IS f(x) use the chain rule.

2007-02-03 11:04:29 · answer #2 · answered by yasiru89 6 · 0 0

f'(x) = ln (tan x)

f''(x) = {1 / tanx} * (sec x)^2 = sec(x) csc(x)


ans. is g

2007-02-03 11:15:41 · answer #3 · answered by qwert 5 · 0 0

fedest.com, questions and answers