English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

find the general solution :

dy/dt = (2^y)*(sin t)^2

2007-02-01 07:35:58 · 2 answers · asked by Anonymous in Science & Mathematics Mathematics

2 answers

Separate variables:
∫(2^-y)dy = ∫((sin t)^2)dt
∫(e^(-yln(2)))dy = ∫((1/2)-cos(2t)/2)dt [as cos(x)^2-sin(x)^2 = cos(2x) and sin(x)^2 + cos(x)^2 = 1]

-e^(-ln(2)y)/ln(2) = t/2 - sin(2t)/4 + c
rearrange to get y = ....

2007-02-01 07:45:23 · answer #1 · answered by Om 5 · 0 0

dy/2^y=(sint)^2 dt
take integral of both sides

for the right hand side
take tan x/2=u
calculate dx, sinx=2sinx/2cosx/2

2007-02-01 08:01:25 · answer #2 · answered by iyiogrenci 6 · 0 0

fedest.com, questions and answers