u = d/dx(sec(x))
u = d/dx(1/cos(x))
u = [(cos(x)) * d/dx(1) - (1) * d/dx(cos(x))] / [(cos(x))^2]
u = [0 - (-sin(x))] / [(cos(x))^2] = sin(x) / [(cos(x))^2]
u = (1/cos(x)) * [(sin(x)) / (cos(x))]
u = sec(x) * tan(x)
2007-01-30 07:50:09
·
answer #1
·
answered by 1988_Escort 3
·
0⤊
0⤋
sec x = 1/cos x
d/dx (sec x) = sinx/cos x * 1/cos x = tan x * sec x
2007-01-30 07:39:06
·
answer #2
·
answered by bequalming 5
·
0⤊
0⤋
sec[x] = 1/cos[x]
d/dx sec[x] = d/dx 1/cos[x]
d/dx 1/cos[x] = sin[x] / cos^2[x]
d/dx 1/cos[x] = sin[x]/cos[x] * (1/cos[x])
d/dx 1/cos[x] = tan[x] * sec[x]
2007-01-30 07:38:35
·
answer #3
·
answered by عبد الله (ドラゴン) 5
·
0⤊
0⤋
we know that:
secx=1/cosx ; d(secx)/dx=d(1/cosx)/dx=?
with (u/v)'=(u'v-v'u)/v^2
(dsecx)/dx=-(-sinx)/cos^2x)
=(sinx/cosx)*(1/cosx)
we know that:
tanx=sinx/cosx and secx=1/cosx
then,
(d/dx)(1/cosx)=sec(x)tan(x)
2007-01-30 08:01:05
·
answer #4
·
answered by Johnny 2
·
0⤊
0⤋
sec(x) => a million / cos(x) u = a million du = 0 v = cos(x) dv = -sin(x) d(u/v) => (v * du - u * dv) / v^2 => (cos(x) * 0 - a million * (-sin(x))) / cos(x)^2 => sin(x) / cos(x)^2 => (sin(x)/cos(x)) * (a million/cos(x)) => tan(x) * sec(x)
2016-12-17 05:58:34
·
answer #5
·
answered by ? 3
·
0⤊
0⤋