2 = (1+sinx)/cosx
= (sin(x/2) + cos(x/2))^2 / (cos^2(x/2) - sin^2 (x/2))
= (1+tanz)/(1-tanz) ; write x/2 for z
=> tanz = 1/3
now tanx = (2tanz)/(1-tan^z)
= (2/3)/(1-1/9)
= 3/4
=> cotx = 4/3
No more homeworks please...
2007-01-24 21:09:51
·
answer #1
·
answered by Sandeep K 3
·
0⤊
0⤋
Square both sides. So
(1+sinx)^2=4(cosx)^2 = 4(1-(sinx)^2)
(sinx)^2 + 2sinx +1 = 4 - 4(sinx)^2
5(sinx)^2 + 2sinx - 3 = 0
Quadratic in sinx gives Sinx = -1, or sinx=3/5, one of which is incorrect because the squaring operation gives a false second root.
If Sinx = -1, then (1+sinx)/cosx = 0, NOT 2 as above.
So sinx=3/5
From the equation; cosx = (1+sinx)/2
So cosx=4/5
cotx = cosx/sinx = 4/3
2007-01-25 05:14:52
·
answer #2
·
answered by statistician 1
·
0⤊
0⤋
(1+sinx)/cosx = 2
1+sinx = 2cosx
(1+sinx)² = (2cosx)²
1 + 2sinx + sin²x = 4cos²x = 4 - 4sin²x
5sin²x + 2sinx - 3 = 0
(5sinx - 3)(sinx + 1) = 0
sinx = 3/5, -1
But the solution -1 must be rejected because cosx cannot equal zero.
sin x = 3/5
cos x = â(1 - sin² x) = â(1 - 9/25) = â(16/25) = 4/5
cot x = cos x / sin x = (4/5) / (3/5) = 4/3
2007-01-25 06:28:10
·
answer #3
·
answered by Northstar 7
·
0⤊
0⤋
1+sinX = 2cosX
(note that cosX can't be 0)
sinX = 2cosX - 1
(sinX)^2 = 4(cosX)^2 - 4cosX + 1
but you know that (sinX)^2 = 1 - (cosX)^2 (formula)
so 1 - (cosX)^2 = 4(cosX)^2 - 4cosX + 1
5(cosX)^2 - 4cosX = 0
and as cosX is not 0:
5cosX = 4
solution:
cosX = 4/5
sinX = 3/5
2007-01-25 05:06:16
·
answer #4
·
answered by Gergely 5
·
1⤊
0⤋
(1+sinx)/cosx=2
secx+tanx=2
secx=2-tanx
Power the two sides of the equation
(secx)^2=4-4tanx+(tanx)^2
as the formula, (secx)^2=1+(tanx)^2
so,
1+(tanx)^2=4-4tanx+(tanx)^2
4tanx=3
tanx=3/4
so, cotx=1/tanx=4/3
2007-01-25 05:22:10
·
answer #5
·
answered by happyrabbit 2
·
0⤊
0⤋
you need to bear with the typing
(1+sin x)/cos x=2
(sin x/2 * sin x/2 +cos x/2*cos x/2 +2 sin x/2 cos x/2) divided by
(cos x/2*cos x/2- sin x/2*sin x/2) =2 --------------------1
using identities 1= sin sqr x+ cos sqr x
sin 2x= 2sinx cosx
cos2x=cos sqr x/2-sin sqr x/2
(sin x/2+ cos x/2)*(sin x/2+cos x/2)/
(cos x/2-sin x/2)(cos x/2+sinx/2) =2
(cos x/2+sin x/2)/(cos x/2-sin x/2)=2-----------------------2
divide numerator and denominator by cos x/2
eqn 2 becomes
(1+tan x/2)/(1-tan x/2)=2
1+tan x/2=2(1-tan x/2)
1+tan x/2=2-2tan x/2
rearranging terms
3tan x/2=1
tan x/2=1/3
x/2 = arctan 1/3
x/2 = (18.43) degree [convert into radian if you wish to]
x=2(18.43)
x=36.86
cot x=cot36.86=4/3=1.33333333
Hope you get good marks if you are submitting an assignment
2007-01-25 05:45:11
·
answer #6
·
answered by jack 1
·
0⤊
0⤋
2/(1+sinx)
2007-01-25 04:58:12
·
answer #7
·
answered by houdon 1
·
0⤊
1⤋