English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Note that the point value of each question is given in parentheses

1. (10) Solve the triangle for which the given parts are a= 27, b= 21 and c= 24

2007-01-21 13:55:55 · 3 answers · asked by student 1 in Science & Mathematics Mathematics

3 answers

Law of Cosines

a^2 = b^2 + c^2 - 2bc(cos(A))

27^2 = 21^2 + 24^2 - 2(21 * 24)cos(A)
729 = 441 + 576 - 2(504)cos(A)
729 = 1017 - 1008cos(A)
-288 = -1008cosA
2/7 = cosA
A = 73°23'54.42"

---------------------------------------

b^2 = a^2 + c^2 - 2ac(cos(B))
21^2 = 27^2 + 24^2 - 2(27 * 24)cos(B)
441 = 729 + 576 - 2(648)cosB
441 = 1305 - 1296cosB
-864 = -1296cosB
cosB = (2/3)
B = 48°11'22.87"

------------------------------------------

c^2 = a^2 + b^2 - 2ab(cosC)
24^2 = 27^2 + 21^2 - 2(27 * 21)cosC
576 = 729 + 441 - 2(567)cosC
576 = 1170 - 1134cosC
-1134cosC = -594
cosC = 11/21
C = 58°24'42.71"

ANS :
A = 73°23'54.42"
B = 48°11'22.87"
C = 58°24'42.71"

2007-01-21 15:46:08 · answer #1 · answered by Sherman81 6 · 0 0

I agree.

You already have the sides, so, you have to calculate the angles.

Just do this:

a^2 = b^2+c^2 - 2bc cos A

2bc cos A = b^2 + c^2 - a^2

And cos A = (b^2 + c^2 - a^2)/2bc

You have a, b and c, calculate cos A, this is a number.

Then find cos^(-1) from this number, this will be A

You can calcualte the other angles using a similar formulas:

b^2 = a^2 + c^2 - 2ac cos B

and

c^2 = a^2 + b^2- 2ab cos C

Ana

2007-01-21 22:43:05 · answer #2 · answered by MathTutor 6 · 0 0

Sounds like a job for the Law of Cosines, a^2 = b^2 + c^2 -2bc cos A.

2007-01-21 22:00:23 · answer #3 · answered by Anonymous · 0 0

fedest.com, questions and answers