English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Note that the point value of each question is given in parentheses

6. (5) Derive the identity for sin 3x in terms of sin x

7. (5) Using the double angle formula, find sin 120 degrees

2007-01-20 11:04:15 · 2 answers · asked by student 1 in Science & Mathematics Mathematics

2 answers

6. To solve for sin(3x) in terms of sin(x), all you have to do is keep in mind that

sin(3x) = sin(2x + x)

Now, apply the sine addition identity.

sin(2x + x) = sin(2x)cos(x) + sin(x)cos(2x)

Now, apply the double angle identity. A reminder:
sin(2x) = 2sin(x)cos(x)
cos(2x) = cos^2(x) - sin^2(x)

2sin(x)cos(x)cos(x) + sin(x) [cos^2(x) - sin^2(x)]

Now, expand

2sin(x)cos^2(x) + sin(x)cos^2(x) - sin^3(x)

We could, in theory, change everything to sines.

2sin(x)[1 - sin^2(x)] + sin(x)[1 - sin^2(x)] - sin^3(x)

2sin(x) - 2sin^3(x) + sin(x) - sin^3(x) - sin^3(x)

3sin(x) - 4sin^3(x)

7.

sin(120) = sin(2 * 60)
= 2sin(60)cos(60)
= 2[sqrt(3)/2] [1/2]
sqrt(3)/2

2007-01-20 11:38:14 · answer #1 · answered by Puggy 7 · 1 0

6.
cos3x + isin3x = (cosx +i sinx)^3
sin3x = 3cos^2 x sinx-sin ^3 x
= 3sinx-4sin^3 x

7.
sin 120
= sin2*60
= 2sin60cos60
= sin60
= √3 / 2

2007-01-20 19:41:16 · answer #2 · answered by sahsjing 7 · 1 0

fedest.com, questions and answers