English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

3 answers

Use partial fractions then get

> int((x^4+1)/(x^3+x),x);
2 2
1/2 x + ln(x) - ln(1 + x )

which is better written as 1/2*x^2 + ln(x) - ln(1+x^2)

Apparently the partial fractions should work out as x + 1/x - 2x/(1+x^2)

2007-01-11 15:05:20 · answer #1 · answered by a_math_guy 5 · 0 0

(( x^4)+1)/((x^3)+x) = x + (1/x) - 2.x/(x^2 +1), so the integral is:
x^2/2 + ln x - ln((x^2 +1).

2007-01-11 23:11:15 · answer #2 · answered by Anonymous · 0 0

integral ((x^4)+1)/((x^3)+x) dx=
integral(x+(-x^2+1)/((x^3+x))dx

2007-01-11 23:00:12 · answer #3 · answered by iyiogrenci 6 · 0 0

fedest.com, questions and answers