English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-01-06 06:52:00 · 8 answers · asked by janettehill185@btinternet.com 1 in Science & Mathematics Physics

8 answers

The name says it all:
Light
Amplification by
Stimulated
Emission of
Radiation.
Alternatively:
http://en.wikipedia.org/wiki/laser

2007-01-06 06:53:36 · answer #1 · answered by supersonic332003 7 · 2 0

What is a Laser?

Most people know the word laser, but do they know what it really is? What's the difference between ordinary light and laser and what does laser really stand for? Let's start with the last question. Laser is an acronym, that is a word made up of initial letters. You could use the complete name: light amplification by stimulated emission of radiation but that's a bit awkward, let's keep to laser.

Almost everyone probably knows that the police use laser when they measure speed. At least many drivers that have exceeded the speed limit know about it, but how many know that you also use laser several times during an ordinary day? You'll find it in CD players, laser printers and much, much more.

You often find laser in action movies where the hero has to escape the laser beams when he's trying to solve a thrilling problem. The power contained in laser is both fascinating and frightening.


How Does Laser Light Differ from Other Light?
Light is really an electromagnetic wave. Each wave has brightness and color, and vibrates at a certain angle, so-called polarization. This is also true for laser light but it is more parallel than any other light source. Every part of the beam has (almost) the exact same direction and the beam will therefore diverge very little. With a good laser an object at a distance of 1 km (0.6 mile) can be illuminated with a dot about 60 mm (2.3 inches) in radius.

As it is so parallel it can also be focused to very small diameters where the concentration of light energy becomes so great that you can cut, drill or turn with the beam. It also makes it possible to illuminate and examine very tiny details. It is this property that is used in surgical appliances and in CD players.

It can also be made very monochromic, so that just one light wavelength is present. This is not the case with ordinary light sources. White light contains all the colors in the spectrum, but even a colored light, such as a red LED (light emitting diode) contains a continuous interval of red wavelengths.
On the other hand, laser emissions are not usually very strong when it comes to energy content. A very powerful laser of the kind that is used in a laser show does not give off more light than an ordinary streetlight; the difference is in how parallel it is.


Stimulated Emission
Normally atoms and molecules emit light at more or less random times and in random directions and phases. All light created in normal light sources, such as bulbs, candles, neon tubes and even the sun is generated in this way.

If energy is stored in the atom and light of the correct wavelength passes close by something else can happen. The atom emits light that is totally synchronous with the passing light. This means that the passing light has been amplified which is necessary for the oscillation taking place between the mirrors in a laser.



Light is normally emitted from atoms or molecules that meet with two conditions.
- They have stored energy originating from heat or previous absorption of light
- A time has passed since the energy was stored
Light emitted in this way goes in random directions, with random phases and at random times.

Albert Einstein predicted early in the 1900s that there is also another way for light to be emitted. It can amplify a passing beam, provided three conditions are met:
- Energy is stored in the atom (same as above)
- Light passes close enough to the atom before the time has expired and the light is emitted in the random fashion described above
- The passing light has a wavelength suitable for the atom.

The process taking place in this case is called Stimulated Emission, which, together with feedback in a resonant cavity between mirrors, forms the conditions for laser.

2007-01-06 06:58:45 · answer #2 · answered by Anonymous · 1 0

NOW - quite simply:

LASER light is what is known as coherent. This means that all the light travelling in the laser beam in the form of photons travel as waves at the same frequency. Not only that, all the wavelengths are what is known as 'in phase' all the maximum points of amplitude occur together.

In normal light, there are different wavelengths of light and the waves are not in phase.

2007-01-06 07:03:33 · answer #3 · answered by Bill N 3 · 0 0

High Performance Tactical Flashlight - http://FlashLight.uzaev.com/?FxVD

2016-07-11 05:25:41 · answer #4 · answered by Trisha 3 · 0 0

basically.............all available light wavelengths concentrated to the smallest area & kept in uniform [ i.e....optic fiber]....depending on original amplitude .........will demonstrate the effect of laser princapals...........many varations..........depending upon desired results.

2007-01-06 07:19:43 · answer #5 · answered by slipstream 7 · 0 0

For a good explination with diagrams see

http://science.howstuffworks.com/laser3.htm

2007-01-06 10:50:36 · answer #6 · answered by ZeedoT 3 · 0 0

ed

2007-01-06 06:54:19 · answer #7 · answered by Splishy 7 · 0 1

Lasers are used to cut precise patterns in glass and metal, to reshape corneas to correct poor vision, and to provide intense heat in controlled fusion experiments. But we also use lasers as very precise light sources in supermarket checkout lines, CD players, and to transmit most telephone signals.

But what is a laser? How is laser light different from regular light?

You can figure this out by playing with different kinds of light in the demonstration below. Notice how the distance between peaks, the "wavelength", changes with the color.

With laser light all the crests and troughs line up with each other.

Yes that means that all the light is exactly the same color. We call that "monochromatic".

But the laser light has a second thing that is special. All the waves are going in the same direction. It is much more "orderly" than the other light.

That is exactly what makes laser light special. It is very organized waves with all the light exactly the same color and going in exactly the same direction. We can also think of light as little particles. With a laser these particles come in a perfectly uniform stream all going in the same direction. Because it is so orderly we can control laser light extremely well, and that is why we can use it to do so many things.

I. The Helium Neon Laser
A. General Description

The HeNe laser is essentially an optical cavity consisting of a capillary tube made of glass with an inner diameter of about 1 mm, with a mirror at each end. Outside the capillary tube, a housing of glass or special metal is constructed to contain the working gases. The assembly is pumped to a high vacuum and small amounts of the named gases are let in at precisely measured pressures. One of the mirrors reflects virtually 100% of the desired wavelength and the other, about 99%. Thus, the output coupler will pass about 1% of any light generated within the cavity at the desired wavelength. This has two immediate implications: first, that the light exiting the cavity has made an average of 100 passes through the tube and second, that the light inside the cavity is about 100 times as bright as the exiting beam.

From this, it is seen that the mirrors must be precisely aligned. In fact, any sideways strain on either of the mirrors will likely adversely affect the laser output. In practice, just a push sideways with a pencil eraser will produce a visible change in output, and may actually stop the lasing action. This means that the laser must always be mounted so that there is no strain on the mirrors, even from the ballast resistor.

The fact that the light between the mirrors is 100 times as bright as that outside is sometimes used to advantage. Some lasers are built with no output mirror, but just a special window called a Brewster window. This is a glass window mounted at a precise angle called the Brewster angle, where the light passes through, now linearly polarized, with virtually no reflection, and thus practically no loss of power. The output coupler (mirror) is then positioned outside, some distance from the laser, and adjusted with three screws. Now, when the laser operates, the very powerful "inside" portion of the beam is outside, and may be used for such jobs as observing tiny particles of dust, since they are now clearly visible in the intense light.

Normally, the longer the laser cavity, the higher the output power, and the less the beam will diverge over distance.

The output of most HeNe's is randomly polarized, but if desired they may be ordered with a polarizer built in.


B. Singlemode or Multimode?

In very simple terms and attempting not to muddy the waters with technical detail, singlemode (TEM 00) lasers produce a single, round spot with a Gaussian profile, brightest in the center and becoming less bright toward the edges. Multimode lasers produce what appears to be multiple beams arranged in a sort of structured pattern. For example, a TEM 01 beam will appear to be divided down the center into two separate beams; a TEM 11 beam will appear to be divided into four beams.

Multimode lasers normally produce more power than singlemode of the same length, but with the complex beam structure described above; the beam diameter is also larger. Thus, if you need a Gaussian beam which will collimate or focus to the smallest spot, singlemode will do it. If you need maximum power and a larger spot is acceptable, multimode may be what you need.


C. Output Power Versus Electrical Current

The optical power output of a HeNe laser will change with changes in input current, as one might expect. The changes, however, are normally not in proportion or even in the same direction. That is, an increase in current might produce a decrease in light output.

In most HeNe's, the output power will at first increase with increased current. Above a certain level, though, output will decrease with increased current. See fig. 1, "P - I CURVE" (Page 13).

While these curves vary among laser types and sizes, the effort here is to show something typical of the general type of laser: small lasers in the one-half to one milliwatt range, larger lasers in the two to seven milliwatt range, and multimode lasers.

It will be seen from fig. 1 that all types start producing light when conduction starts, produce increasing power as current increases to a certain point, then produce less power after that point until, when a certain upper current is reached, the laser stops lasing altogether. As shown in fig. 1, the smaller lasers have a steeper slope, both increasing and decreasing, than the larger lasers. Normally, the recommended operating current is chosen to coincide with the maximum output power. Thus, we see that increasing the current to the laser will not necessarily result in more light from the laser. Generally, an operating current setting different from that recommended by the laser manufacturer is counterproductive.


D. Optical Noise

1. Definition
Optical noise, for our purposes, will be defined as any variation in laser output power from any cause.

2. Noise Sources
Noise has a number of causes, some from the laser and some from the power supply. First, the laser:

a. Modesweeping:
This is a very low frequency variation in output power caused by variation in the length of the cavity from thermal effects. It appears as repeated cycles of gradual brightening and dimming of the output as the laser warms up or cools as, for example, from an occasional draft of air. It will go through many cycles of this while warming up only a few degrees. These fluctuations in power occur at a much faster rate when the laser first starts, slowing markedly as it warms up. The effect is usually less observable in a longer laser, and more pronounced in a shorter laser. In fact, if we try to build a laser shorter than about five inches, the beam will actually come in and go out as the modes pass through.

b. Single Frequency Oscillation:
At certain current levels, generally at least one milliamp above recommmended operating current, a laser will strike up a low level oscilllation, at a frequency of roughly one to three megahertz. This might modulate the beam power at a depth of up to twenty or thirty percent peak-to-peak in an extreme case, but generally just a few percent. It also modulates the current to the laser. Raising or lowering the current will greatly affect the strength of this oscillation. In most applications, this noise is not a problem from any point of view.

c. Broadband Noise:
If the input current is raised to still higher levels, we come into a zone where the laser starts to generate something like white noise, which may come and go as current is increased. This noise looks quite disorganized on an oscilloscope and is normally stronger than the single frequency noise. This noise, too, is normally not a problem in most applications. If recommended operating current is used, it should never be encountered.

d. Noise from the Power Supply:
The power supply creates noise on the output beam too. This noise is all due to variations in current through the laser.

The most important source of variation, or current ripple, is from the switching action of the power supply. Most modern laser power supplies make use of high frequency power conversion. This occurs at frequencies between 20 KHz and 110 KHz. It is difficult or impossible to filter all of this out at the power supply output. As the current increases and decreases, the laser output follows naturally along, increasing and decreasing. This noise at the laser output, though, is not proportional to the power supply noise. By looking at fig. 1, we see that a given current variation will not usually produce the same variation in laser output. In fact, depending on the individual type, HeNe's attenuate this current ripple by from three to ten times. Thus, if power supply ripple is 10% peak-to-peak, laser power ripple may well be as little as 1% p-p.

A separate effect of power supply ripple is that, if current ripple is strong enough to go below the laser's dropout current, dropout will occur and the whole system will become unstable, repeatedly going through the start-dropout cycle.

A secondary, and not so important, source of power supply noise is the AC line where the power source is the line. This noise occurs at 120 Hz, the frequency of the line after full-wave rectification, and may be incompletely controlled by the power supply's regulation. Generally, this type of noise is less than 2% p-p and is not a major concern. However, power supplies are available which eliminate this effect.

3. Measurement Techniques
Measuring laser beam noise is done by placing a photodiode in the beam's path and connecting it to an oscilloscope. This process, though, contains enough pitfalls and difficulties that it really is beyond the scope of this manual.

Measuring the electrical ripple or noise to the laser is done by placing a small resistor, usually 100 ohms, in series with the cathode of the laser and connecting an oscilloscope across it. See fig. 3, Page 15. When doing this, be sure all connections are secure.

4. Is Noise a Problem?
Noise from the laser or the power supply is in no way harmful to the laser or the power supply, and if the application is such that it does not require a constant power level, noise and ripple should not be a concern. An example of a noise-intolerant application might be a scientific particle measuring instrument. Power supplies with extremely low output noise for these applications are readily available at slightly higher cost.

For more information about HeNe lasers, we recommend HeNe Lasers: Their Quirks and Quarks by Keith Schmidt of Garian.


E. Electrical Characteristics

1. Operating Voltage
The HeNe laser operates much like an old-fashioned gas regulator tube; when you put a current through it, the voltage across it remains more or less constant, regardless of the current. In practice, voltage actually declines somewhat with increased current, thus it is seen by the power supply as a complex impedance (not a simple resistance) and requires a ballast resistor to prevent it from simply being an oscillator, turning on and off rapidly at a rate of several tens of hertz. With an adequate ballast resistor, the operating voltage will increase slightly with increased current. Thus, we see that the laser / ballast combination is strictly in control of the operating voltage, keeping it fairly constant. The power supply must be designed, then, to comply with the voltage needs of the laser / ballast combination being used.

Operating voltages vary with several factors, among them the diameter of the capillary, the gas fill pressures, and the length of the laser. Voltages, including the ballast, will vary from around 1,200 volts for a tube 5 inches long to around 3,500 volts for one which is two feet long.

A common pitfall to watch for is specifying only the laser operating voltage when ordering the power supply; the ballast must be figured in, too. The laser manufacturers commonly publish only the laser operating voltage; they do not include the ballast unless they are selling a laser head which includes the ballast resistor.

2. Operating Current
Operating current, like voltage, depends on several factors. First, there is a minimum current below which ionization cannot be sustained, and the laser "drops out" of operation. Above this, as current is increased, there is a range where the laser output increases with current. This increase, however, is not proportional to current increase. See fig. 1. At still higher currents, power will typically decrease and the laser will begin to intermittently generate noise.

Recommended operating current normally is specified by the laser manufacturer with the following considerations: At or near peak output power; safely above the "dropout current"; below the levels where the noises begin to be generated; and below levels which will cause excessive heat and resultant reduction of service life.

3. Ballast Resistor
Taken by themselves, these lasers will behave as relaxation oscillators. To stabilize this effect, a ballast resistor is placed in series with the laser. The value must be high enough to stop the oscillation and low enough to avoid wasting electrical power and generating heat unnecessarily. Wattage must be appropriate; normally a 75 K, five watt resistor is used, except for the smaller lasers running at less current. A one or two watt resistor may be appropriate for these.

The ballast must always be placed at the anode end to be effective; HeNe's have a comparatively large cathode, whose capacitance reduces the effect of the ballast. Some configurations, however, seem to benefit from a small amount of cathode ballast in combination with the anode ballast.

In the interest of stability, the ballast must always be mounted within an inch or two of the anode. Any small amount of added capacitance on the low side of the ballast may cause the system to become unstable and start oscillating, in and out of dropout.

Important: In choosing the ballast resistor, bear in mind the following: Before the laser fires, there may be as much as 11,000 volts across it, with no current flowing. When conduction begins, laser voltage drops instantly to, for example, 2,000 volts. This means that, for a few microseconds, as much as 9,000 volts is dropped across the ballast resistor, until the power supply's output capacitors drain to operating level. This kind of abuse takes a mighty resistor. Generally, wirewound is the only kind that will stand up. Some smaller lasers, using only 6,500 start volts, can sneak through with carbon composition or experimentally proven carbon film types. Another caution: Some offshore resistor manufacturers advertise " wirewound" which turn out, in fact, to be metal oxide and will not stand up to a single start transient.

4. Dropout Current
Below a certain level of current, ionization is not sustainable and the laser stops operating. This is called "dropout current"; it may be reduced somewhat by increasing the ballast, but eventually, around 150 K ohms or so, a limit is reached where the current just is not enough to sustain ionization and the laser stops conducting, allowing the power supply to build up to start voltage, fire the laser and start another cycle. This will appear as a form of oscillation at around 10-20 Hz. This behavior is not good for either the laser or the power supply and should be stopped as soon as it is recognized.
II. The Power Supply
A. General Description

Modern HeNe laser power supplies are of the high frequency switching type, operating between 20 KHz and 110 KHz. They are made to accept almost any input from 5 VDC to 240 VAC, and to operate any HeNe from 1/2 mW up to 30 mW and larger. Physical sizes range from 1.3 cu. in. to about the size of a brick. They are generally potted in solid thermally conductive potting material to contain the high voltages, up to 11 KV, to conduct the heat throughout the package, and for mechanical stability. Certain applications may require slightly different packaging.


B. Input Considerations

If AC power is available, it is preferable because it is pretty much inexhaustible. Suitable AC voltages are 100 (85-120), 120 (108-132), and 220 or 240 (215-265). If no AC is available, battery or DC voltages of 5 V, 6 - 9 V such as a couple of 9 V alkalines in parallel, 10 - 14 V such as a vehicle battery, 12 - 18 V such as two 9 V batteries in series, or 22 to 30 V such as is found in some copiers, etc.

A very good strategy might be to use a DC input supply in conjunction with a wall plug converter, to avoid the cost and problems of complying with UL, CSA, VDE, etc. if your application would otherwise require it. Most applications, however, do not.

Beware of feeding the power supply with a switching converter. Unless the output is very clean, the switching action may interfere with the laser power supply, causing instability and malfunction.

Whatever input you use, though, there must be sufficient current available to provide the inrush current required be the power supply. This will typically be from several amps. for a low voltage DC input running a large laser to perhaps one amp. for an AC input. Most batteries handle this easily; fusing, however, must take this into consideration.


C. Output Considerations

1. Output Voltage
The output voltage of the power supply is controlled by the laser / ballast combination, which acts much like a gas tube regulator. Therefore, the power supply must be designed to comply with the needs of the laser configuration. It is, in fact, built as a current source, supplying whatever current the user wishes, within its limits, and whatever voltage the laser demands.

The power supply's output voltage range is normally specified on its label; the user must be sure that the voltage of the laser to be powered, including the ballast resistor, falls within the specified output range of the power supply. If it does not, the system may work, but the power supply may be forced to work harder than it should, and may be damaged after a time. This is true even if the load is less than allowable.

2. Start Voltage
Depending on the model of power supply, it will produce more than eight thousand or more than ten thousand volts for starting the laser. Generally, this voltage starts them virtually instantly. Occasionally, though, we encounter a hard starting laser which may take as long as several minutes to start. A laser such as this should just be returned to the maker. 3. Output Current Output current should always be set, give or take a half milliamp, at whatever the laser manufacturer recommends. Settings much lower than recommended may get below the laser's dropout current, with the result being intermittent, or oscillating, operation. As noted previously, this condition is not good for either the laser or power supply and should be avoided. Settings much higher than recommended will likely result in laser-induced noise and, at higher levels, reduced laser power, as shown in fig. 1.

4. Noise and Ripple
If your application is one of most, noise & ripple are of little concern. Where you need a coherent, highly focusable light, it generally matters not if the intensity of the light varies slightly, invisibly. Remember that most lasers attenuate ripple effects which come from the power supply by three to ten times. If your application is one which is sensitive to variations in beam intensity, specify a level of current ripple which is near the level you can tolerate from your laser.

5. Current Pot - Yes or No?
If you intend to operate more than one laser requiring different currents from one power supply model, specify a current pot. Be prepared to measure the current, in the cathode lead,with everything connected securely. High voltage can be uncomfortable, to say the least. See fig. 2, Page 14.

Otherwise, specify a current setting which is right for the laser you are using. One or two tenths of a milliamp one way or the other are not normally a concern.

6. How to Measure Current and Dropout Current
To measure laser current, use an analog meter of 1 to 10 mA inserted in series with the laser in the cathode lead. A digital meter can also be used, but it should be shunted by two back-to-back fast diodes to protect the meter in case of a fault. See fig. 2, Page 14. 1N4148's are fine for this job. When measuring dropout current, start the laser with a normal setting, then back the current down and note the reading at the point where dropout occurs.


D. Thermal Considerations

1. Laser Tube & Ballast
By far the largest share of the heat developed in these systems is by the laser and ballast resistor. HeNe's turn virtually all of their input power into heat. In the case of a five mW laser, for example, we might feed it 2500 V at 6.5 mA, or 16 + watts, and only about 5/1000 watt of laser light is produced. The rest is given off as heat.

2. Power Supply Heat: Is Heat Sinking Required?
This type of switching power supply is very efficient, under most conditions better than 75%. The power supply, then, might draw as much as 22 watts and deliver 75% of that to the laser and ballast. That means the power supply is turning about 5.5 watts or less into heat, which the thermally conductive potting material spreads fairly evenly throughout the package. What this means is that, as long as the power supply is not surrounded by some thermally insulating material or exposed to excessive ambient temperatures, no heat sinking is ever required.

One caution here: The user must be careful that ambient temperature, especially inside the equipment which contains the laser and power supply, does not exceed that specified by the laser or power supply manufacturer.

3. Positioning of the Components
The power supply does contain several components which may have their service life reduced by excess heat. Therefore, it is suggested that the user keep the power supply away from the laser housing so that it will keep as cool as it can.


E. Current Regulation

1. Effect of Current Variation on Laser Output
By referring again to fig, 1, we see that normally, and particularly with larger lasers, small variations in current cause much smaller changes in laser output. Thus, current variations of a couple of tenths of a milliamp one way or the other are cause for little concern in most applications. However, most of these power supplies are designed to meet even the most demanding applications, thus they have very tight regulation, under all specified conditions of line and load.

2. Dropout Considerations
When designing a HeNe system, it must be remembered that placing a metal housing around a plasma tube will raise its dropout current by as much as a milliamp. It does this by increasing the capacitance close to the anode. Also, if a tube is in a nonconductive housing, for example Lexan, placing the hand around the housing will have nearly the same effect. Therefore, dropout current must be determined under conditions similar to the above and the power supply current set or specified accordingly. A laser should always be provided with about one milliamp more than its measured dropout current to avoid encountering dropout. Also, remember that dropout current increases by perhaps half a milliamp as the laser warms up.


F. Input Considerations

1. Relation of Input Voltage to Current
Since these power supplies are true power converters, i.e. watts to watts, it will be seen that input current varies inversely with input voltage, so that with a constant load (laser and ballast), input current increases with reduced voltage and vice versa.

2. Battery Considerations
For battery operation, four voltages are recommended: 9 V, 12 V, 18 V and 24 V. For small, hand-held laser systems, 9 V or 18 V systems each can make use of two 9- volt alkaline batteries, which will give about 30 to 45 minutes of laser operation, depending on the laser selected. For larger systems, such as a construction laser, a vehicle battery of 12 or 24 V can operate a two milliwatt laser for several hours and still start the vehicle.

The 5 volt input power supplies are optimized for use with a computer system power supply.

3. Low Input Voltage Effects
When the battery's voltage falls below the power supply's minimum input value, the supply will go out of regulation or "squat" and the laser will start dropping out. The power supply will then go into start mode and re-start the laser, repeating this cycle until it is shut down. This shows up as a type of oscillation at around 10- 20 Hz. The laser will make a series of spots if scanned or swept across a surface such as a wall, and the power supply will make an audible buzzing. This condition is not good for either the laser or power supply and should be stopped when it becomes apparent. For a situation where the laser is needed, such as when using a laser pointer while speaking, an effort should be made to minimize use of the laser and replace the batteries as soon as possible. Spare batteries are recommended for these situations.


G. Size and Configuration

1. Mounting Required
Most of these power supply modules are provided with at least two mounting holes centered 2.3 inches apart. These holes are located close to the side of the module and will accommodate size 6-32 screws. Modules should be kept at least 1/2 inch from the laser tube or housing to allow them to stay cool. As noted previously, it is not necessary in most cases to mount the module to any heat sink, although if one exists in the form of a metal case, for example, mounting it to this can only help extend service life.

2. Output Wires
The high voltage positive wire is, in every case, a high voltage stranded wire with at least 20 KV insulation. The return wire generally is, too, although some configurations use a thinner wire with perhaps a teflon insulation. Where the return lead must pass close to the laser anode, though, the heavier insulation is preferred.

Many of the larger power supplies are made with a high voltage connector molded onto the leads. This style of connector was popularized by the Alden company, so is often called an "Alden" connector, although they are now made by other companies.

3. Special Configurations Available
If an application requires a special form or fit, special configurations can often be supplied with short notice and at little or no extra cost. Special output voltages and currents can also be easily and inexpensively arranged, in most cases.

4. Fusing Requirements
These devices should be fused to protect the line or batteries providing power. Fusing must be able to provide enough current for the turn-on inrush. For a 12-V input supply operating a 5 mW laser, a three to five amp fast blow fuse is recommended. For the same size system operating from the 120 V line, a one amp fuse is appropriate. A one-half to one milliwatt laser operated by two 9-volt batteries should not require fusing. For further guidance on this, contact the power supply manufacturer.

2007-01-06 06:56:57 · answer #8 · answered by dinoslayer33 1 · 1 1

fedest.com, questions and answers