English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-01-02 11:37:24 · 3 answers · asked by glossykisses16 1 in Science & Mathematics Biology

3 answers

Some species of dinoflagellates,
for example, are not photosynthetic. They do not produce their food from
inorganic substrates but rather eat (usually bacteria and other
phytoplankton) and some do both depending on what is available. So some dinoflagellates are zoo- and some
are phytoplankton. The 'switch-hitters' are both.

Diatoms (Bacillariophyceae) are
obligate autotrophs. They require sunlight for growth. There are some that
can absorb organic compounds to supplement their nutrition, but they cannot
live only that way. Diatoms are a diverse group of photosynthetic
unicellular (although some form chains) organisms characterized by their
siliceous (glass) "shells". These shells, called frustules, are the main
determinant of classification. The diatoms are divided into two
subgroups, based on the symmetry of their frustules. If the
frustule is radially symmetrical, they are part of the "Centric" group
(Centrales) while those that are bilaterally symmetrical belong in the
"Pennate" group (Pennales). Frustules come in a variety of shapes and can
be highly ornamented. Since they persist after death, they are also the
subject of paleoclimate research as frustules from sediments can be
identified. Knowing who lived in the waters above the sediment can give
clues to past environmental conditions based on the tolerance range of the
species that are found. They are classified in the classical Linnean method
of morphological characters (size, shape, etc.). But more and more research
is being done using molecular biology to examine the genetic relationships.
Sometimes two speices that look quite alike are not closely related
genetically. This has caused a minor revolution within the science of
classification of organisms (taxonomy).

2007-01-02 11:48:27 · answer #1 · answered by jamaica 5 · 0 0

flagella are like tails. dinoflagellates have them, but diatoms do not have any type of tail for movement. see this article:

http://www.skepticalaquarist.com/docs/algae/diatoms.shtml

2007-01-02 11:46:37 · answer #2 · answered by Louiegirl_Chicago 5 · 0 0

Diatoms (Greek: διά (dia) = "through" + τέμνειν (temnein) = "to cut", i.e., "cut in half") are a major group of eukaryotic algae, and are one of the most common types of phytoplankton. Most diatoms are unicellular, although some form chains or simple colonies. A characteristic feature of diatom cells is that they are encased within a unique cell wall made of silica. These walls show a wide diversity in form, some quite beautiful and ornate, but usually consist of two asymmetrical sides with a split between them, hence the group name.General biology
There are more than 200 genera of living diatoms, and it is estimated that there are approximately 100 000 extant species (Round & Crawford, 1990). Diatoms are a widespread group and can be found in the oceans, in freshwater, in soils and on damp surfaces. Most live pelagically in open water, although some live as surface films at the water-sediment interface (benthic), or even under damp atmospheric conditions. They are especially important in oceans, where they are estimated to contribute up to 45% of the total oceanic primary production (Mann, 1999).

Diatoms belong to a large group called the heterokonts, including both autotrophs (e.g. golden algae, kelp) and heterotrophs (e.g. water moulds). Their chloroplasts are typical of heterokonts, with four membranes and containing pigments such as fucoxanthin. Individuals usually lack flagella, but they are present in gametes and have the usual heterokont structure, except they lack the hairs (mastigonemes) characteristic in other groups.

Most diatom species are non-motile but some are capable of an oozing motion. As their relatively dense cell walls cause them to readily sink, planktonic forms in open water usually rely on turbulent mixing of the upper layers by the wind to keep them suspended in sunlit surface waters. Some species actively regulate their buoyancy to counter sinking. Some diatoms keep an oil substance to make them buoyant and counteract sinking.

Diatoms cells are contained within a unique silicate (silicic acid) cell wall comprised of two separate valves (or shells). The biogenic silica that the cell wall is composed of is synthesised intracellularly by the polymerisation of silicic acid monomers. This material is then extruded to the cell exterior and added to the wall. Diatom cell walls are also called frustules or tests, and their two valves typically overlap one other like the two halves of a petri dish. In most species, when a diatom divides to produce two daughter cells, each cell keeps one of the two valves and grows a smaller valve within it. As a result, after each division cycle the average size of diatom cells in the population gets smaller. Once such cells reach a certain minimum size, rather than simply divide vegetatively, they reverse this decline by forming an auxospore. This expands in size to give rise to a much larger cell, which then returns to size-diminishing divisions. Auxospore production is almost always linked to meiosis and sexual reproduction.

Decomposition and decay of diatoms leads to organic and inorganic (in the form of silicates) sediment, the inorganic component of which can lead to a method of analyzing past marine environments by corings of ocean floors or bay muds, since the inorganic matter is embedded in deposition of clays and silts and forms a permanent geological record of such marine strata.


[edit] Classification

An assortment of Diatomea from Ernst Haeckel's 1904 Kunstformen der Natur (Artforms of Nature)The classification of heterokonts is still unsettled, and they may be treated as a division (or phylum), kingdom, or something in-between. Accordingly, groups like the diatoms may be ranked anywhere from class (usually called Bacillariophyceae) to division (usually called Bacillariophyta), with corresponding changes in the ranks of their subgroups.

Diatoms are traditionally divided into two orders: centric diatoms (Centrales), which are radially symmetric, and pennate diatoms (Pennales), which are bilaterally symmetric. The former are paraphyletic to the latter. A more recent classification is that of Round & Crawford (1990), who divide the diatoms into three classes: centric diatoms (Coscinodiscophyceae), pennate diatoms without a raphe (Fragilariophyceae), and pennate diatoms with a raphe (Bacillariophyceae). It is probable there will be further revisions as our understanding of their relationships increases.

Round & Crawford (1990) and Hoek et al. (1995) provide more comprehensive coverage of diatom taxonomy.


[edit] Ecology

Treguer et al. (1995) budget of the ocean's silicon cyclePlanktonic forms in freshwater and marine environments typically exhibit a "bloom and bust" lifestyle. When conditions in the upper mixed layer (nutrients and light) are favourable (e.g. at the start of spring) their competitive edge (Furnas, 1990) allows them to quickly dominate phytoplankton communities ("bloom"). As such they are often classed as opportunistic r-strategists (i.e. those organisms whose ecology is defined by a high growth rate, r).

When conditions turn unfavourable, usually upon depletion of nutrients, diatom cells typically increase in sinking rate and exit the upper mixed layer ("bust"). This sinking is induced by either a loss of buoyancy control, the synthesis of mucilage that sticks diatoms cells together, or the production of heavy resting spores. Sinking out of the upper mixed layer removes diatoms from conditions inimical to growth, including grazer populations and higher temperatures (which would otherwise increase cell metabolism). Cells reaching deeper water or the shallow seafloor can then rest until conditions become more favourable again. In the open ocean, many sinking cells are lost to the deep, but refuge populations can persist near the thermocline.

Ultimately, diatom cells in these resting populations re-enter the upper mixed layer when vertical mixing entrains them. In most circumstances, this mixing also replenishes nutrients in the upper mixed layer, setting the scene for the next round of diatom blooms. In the open ocean (away from areas of continuous upwelling; see Dugdale & Wilkerson, 1998), this cycle of bloom, bust, then return to pre-bloom conditions typically occurs over an annual cycle, with diatoms only being prevalent during the spring and early summer. In some locations, however, an autumn bloom may occur, caused by the breakdown of summer stratification and the entrainment of nutrients while light levels are still sufficient for growth. Since vertical mixing is increasing, and light levels are falling as winter approaches, these blooms are smaller and shorter-lived than their spring equivalents.

In the open ocean, the condition that typically causes diatom (spring) blooms to end is a lack of silicon. Unlike other nutrients, this is only a major requirement of diatoms so it is not regenerated in the plankton ecosystem as efficiently as, for instance, nitrogen or phosphorus nutrients. This can be seen in maps of surface nutrient concentrations - as nutrients decline along gradients, silicon is usually the first to be exhausted (followed normally by nitrogen then phosphorus).

Because of this boom-and-bust lifestyle, diatoms are believed to play a disproportionately important role in the export of carbon from oceanic surface waters (Smetacek, 1985; Dugdale & Wilkerson, 1998; see also the biological pump). Significantly, they also play a key role in the regulation of the biogeochemical cycle of silicon in the modern ocean (Treguer et al., 1995; Yool & Tyrrell, 2003).


Egge & Aksnes (1992) figureThe use of silicon by diatoms is believed by many researchers to be the key to their ecological success. In a now classic study, Egge & Aksnes (1992) found that diatom dominance of mesocosm communities was directly related to the availability of silicate. When silicon content approaches a concentration of 2 mmol m-3, diatoms typically represent more than 70% of the phytoplankton community. Raven (1983) noted that, relative to organic cell walls, silica frustules require less energy to synthesize (approximately 8%), potentially a significant saving on the overall cell energy budget. Other researchers (Milligan & Morel, 2002) have suggested that the biogenic silica in diatom cell walls acts as an effective pH buffering agent, facilitating the conversion of bicarbonate to dissolved CO2 (which is more readily assimilated). Notwithstanding the possible advantages conferred by silicon, diatoms typically have higher growth rates than other algae of a corresponding size (Furnas, 1990).


[edit] Evolutionary history
Heterokont chloroplasts appear to be derived from those of red algae, rather than directly from prokaryotes as occurs in plants. This suggests they had a more recent origin than many other algae. However, fossil evidence is scant, and it is really only with the evolution of the diatoms themselves that the heterokonts make a serious impression on the fossil record.

The earliest known fossil diatoms date from the early Jurassic (~185 Ma; Kooistra & Medlin, 1996), although recent molecular clock (Kooistra & Medlin, 1996) and sedimentary (Schieber, Krinsley & Riciputi, 2000) evidence suggests an earlier origin. Medlin et al. (1997) suggest that their origin may be related to the end-Permian mass extinction (~250 Ma), after which many marine niches were opened. The gap between this event and the time that fossil diatoms first appear may indicate a period when diatoms were unsilicified and their evolution was cryptic (Raven & Waite, 2004). Since the advent of silicification, diatoms have made a significant impression on the fossil record, with major deposits of fossil diatoms found as far back as the early Cretaceous, and some rocks (diatomaceous earth, diatomite, kieselguhr) being composed almost entirely of them.

Although the diatoms may have existed since the Triassic, the timing of their ascendancy and "take-over" of the silicon cycle is more recent. Prior to the Phanerozoic (before 544 Ma), it is believed that microbial or inorganic processes weakly regulated the ocean's silicon cycle (Siever, 1991; Kidder & Erwin, 2001; Grenne & Slack, 2003). Subsequently, the cycle appears dominated (and more strongly regulated) by the radiolarians and siliceous sponges, the former as zooplankton, the latter as sedentary filter feeders primarily on the continental shelves (Racki & Cordey, 2000). Within the last 100 My, it is thought that the silicon cycle has come under even tighter control, and that this derives from the ecological ascendancy of the diatoms.

However, the precise timing of the "take-over" is unclear, and different authors have conflicting interpretations of the fossil record. Some evidence, such as the eviction of siliceous sponges from the shelves (Maldonado et al., 1999), suggests that this takeover began in the Cretaceous (146 Ma to 65 Ma), while evidence from radiolarians suggests "take-over" did not begin until the Cenozoic (65 Ma to present). Nevertheless, regardless of the details of the "take-over" timing, it is clear that this most recent revolution has installed much tighter biological control over the biogeochemical cycle of silicon.


[edit] Collection
Living diatoms are often found clinging in great numbers to filamentous algae, or forming gelatinous masses on various submerged plants. Cladophora is frequently covered with Cocconeis, an elliptically shaped diatom; Vaucheria is often covered with small forms. Diatoms frequently present as a brown, slippery coating on submerged stones and sticks, and may be seen to "stream" with river current.

The surface mud of a pond, ditch, or lagoon will almost always yield some diatoms. They can be made to emerge from the mud by putting black paper around the jar and letting direct sunlight fall upon the surface of the water. The diatoms, within a day or less, will come to the top in a scum which can be easily isolated and secured.

Since diatoms form an important part of the food of molluscs, tunicates, and fishes, the alimentary tracts of these animals often yield forms that are not easily secured in other ways. Marine diatoms can be collected by direct water sampling, though benthic forms can be secured by scraping barnacles, oyster shells, and other shells.

The silicious shells of diatoms are among the most beautiful objects which can be examined with the microscope. To obtain perfectly clean mounts requires considerable time and patience, but once the material is cleaned, preparations may be made at any time with very little trouble.

Note : Much of the text in this section (Collection) is from Methods in Plant Histology from the 1900s. Handle with care!


[edit] Diatom Genomes
The whole genome sequence of the centric diatom, Thalassiosira pseudonana, has been described (Armbrust et al., 2004), the sequencing of a second diatom genome from the pennate diatom Phaeodactylum tricornutum is in progress. The first insights into the genome properties of the P. tricornutum gene repertoire was described using 1,000 ESTs (Scala et al., 2002). Subsequently, the number of ESTs was extended to 12,000 and the Diatom EST Database was constructed for functional analyses (Maheswari et al., 2005). These sequences have been used to make a comparative analysis between P. tricornutum and the putative complete proteomes from the green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the centric diatom T. pseudonana (Montsant et al., 2005).
The dinoflagellates are a large group of flagellate protists. Most are marine plankton, but they are common in fresh water habitats as well; their populations are distributed depending on temperature, salinity, or depth. About half of all dinoflagellates are photosynthetic, and these make up the largest group of eukaryotic algae aside from the diatoms. Being primary producers make them an important part of the aquatic food chain. Some species, called zooxanthellae, are endosymbionts of marine animals and protozoa, and play an important part in the biology of coral reefs. Other dinoflagellates are colorless predators on other protozoa, and a few forms are parasitic (see for example Oodinium, Pfiesteria).Morphology
Most dinoflagellates are unicellular forms with two dissimilar flagella. One of these extends towards the posterior, called the longitudinal flagellum, while the other forms a lateral circle, called the transverse flagellum. In many forms these are set into grooves, called the sulcus and cingulum. The transverse flagellum provides most of the force propelling the cell, and often imparts to it a distinctive whirling motion, which is what gives the name dinoflagellate refers to (Greek dinos, whirling). The longitudinal acts mainly as the steering wheel, but providing little propulsive force as well.

Dinoflagellates have a complex cell covering called an amphiesma, composed of flattened vesicles, called alveoli. In some forms, these support overlapping cellulose plates that make up a sort of armor called the theca. These come in various shapes and arrangements, depending on the species and sometimes stage of the dinoflagellate. Fibrous extrusomes are also found in many forms. Together with various other structural and genetic details, this organization indicates a close relationship between the dinoflagellates, Apicomplexa, and ciliates, collectively referred to as the alveolates.

The chloroplasts in most photosynthetic dinoflagellates are bound by three membranes, suggesting they were probably derived from some ingested alga, and contain chlorophylls a and c and fucoxanthin, as well as various other accessory pigments. However, a few have chloroplasts with different pigmentation and structure, some of which retain a nucleus. This suggests that chloroplasts were incorporated by several endosymbiotic events involving already colored or secondarily colorless forms. The discovery of plastids in Apicomplexa have led some to suggest they were inherited from an ancestor common to the two groups, but none of the more basal lines have them.

All the same, the dinoflagellate still consists of the more common organelles such as rough and smooth endoplasmic reticulum, Golgi apparatus, mitochondria, lipid and starch grains, and food vacuoles. Some have even been found with light sensitive organelle such as the eyespot or a larger nucleus containing a prominent nucleolus.


[edit] Life-cycle
Dinoflagellates have a peculiar form of nucleus, called a dinokaryon, in which the chromosomes are attached to the nuclear membrane. These lack histones and remained condensed throughout interphase rather than just during mitosis, which is closed and involves a unique external spindle. This sort of nucleus was once considered to be an intermediate between the nucleoid region of prokaryotes and the true nuclei of eukaryotes, and so were termed mesokaryotic, but now are considered advanced rather than primitive traits.

In most dinoflagellates, the nucleus is dinokaryotic throughout the entire life cycle. They are usually haploid, and reproduce primarily through fission, but sexual reproduction also occurs. This takes place by fusion of two individuals to form a zygote, which may remain mobile in typical dinoflagellate fashion or may form a resting dinocyst, which later undergoes meiosis to produce new haploid cells.

However, when the conditions become desperate, usually starvation or no light, their normal routines change dramatically. Two dinoflagellates will fuse together forming a planozygote. Next is a stage not much different from hibernation called hypnozygote when the organism takes in excess fat and oil. At the same time its shape is getting fatter and the shell gets harder. Sometimes even spikes are formed. When the weather allows it, these dinoflagellates break out of their shell and are in a temporary stage, planomeiocyte, when they quickly reforms their individual thecae and return to the dinoflagellates at the beginning of the process.


Image of bioluminescent red tide event of 2005 at a beach in Carlsbad California showing brilliantly glowing crashing waves containing billions of Lingulodinium polyedrum dinoflagellates. The phenomenon is thought to have something to do with quorum sensing.
[edit] Ecology and fossils
Dinoflagellates sometimes bloom in concentrations of more than a million cells per millilitre. Some species produce neurotoxins, which in such quantities kill fish and accumulate in filter feeders such as shellfish, which in turn may pass them on to people who eat them. This phenomenon is called a red tide, from the color the bloom imparts to the water. Some colorless dinoflagellates may also form toxic blooms, such as Pfiesteria. It should be noted that not all dinoflagellate blooms are dangerous. Bluish flickers visible in ocean water at night often come from blooms of bioluminescent dinoflagellates, which emit short flashes of light when disturbed.

Dinoflagellate cysts are found as microfossils from the Triassic period, and form a major part of the organic-walled marine microflora from the middle Jurassic, through the Cretaceous and Cenozoic to the present day. Arpylorus, from the Silurian of North Africa was at one time considered to be a dinoflagellate cyst, but this palynomorph is now considered to be part of the microfauna. It is possible that some of the Paleozoic acritarchs also represent dinoflagellates.


[edit] Cautions
The same Red Tide mentioned above is more specifically produced when dinoflagellates are able to reproduce rapidly and copiously on account of the abundant nutrients in the water. Although the resulting red waves are a miraculous sight, they, again, contain toxins that not only affect all marine life in the ocean but the people who consume them as well. A specific carrier is shellfish. This can introduce both non-fatal and fatal illnesses. Human inputs of phosphate further encourage these red tides, and consequently there is a strong interest in learning more about dinoflagellates, from both medical and economic perspectives.


[edit] Classification
In 1753 the first modern Dinoflagellates were described by Baker and named by Muller in 1773. These same dinoflagellates were first defined by Otto Bütschli in 1885 as the flagellate order Dinoflagellida. Botanists treated them as a division of algae, named Pyrrhophyta ("fire algae"; Greek pyrrhos, fire) after the bioluminscent forms, or Dinophyta. At various times the cryptomonads, ebriids, and ellobiopsids have been included here, but only the last are now considered close relatives. Dinoflagellates have a known ability to evolve from non-cyst to cyst forming strategies which makes it nearly impossible to recreate their evolutionary history.

2007-01-02 14:46:23 · answer #3 · answered by wierdos!!! 4 · 0 0

fedest.com, questions and answers