English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Find the length of a side of each of two squares given that the sum of their perimeters is 44 ft and the sum of their areas is 73 ft2.

2006-12-31 04:13:11 · 2 answers · asked by Anonymous in Science & Mathematics Mathematics

2 answers

8 and 3

2006-12-31 04:34:53 · answer #1 · answered by Mena M 3 · 0 0

We'll just use a polynomial to solve this problem:

x^2 + y^2 = 73 and

y = 1/4 of 44 minus x so

x^2+((0.25(44)-x)^2)=73

Now solve this polynomial by factoring and reducing:

x^2 + (11-x)(11-x) = 73

x^2 + 121 - 22x + x ^2 = 73

2x^2 - 22x + 121 = 73

2x^2 - 22x = -48

x^2 - 11x + 24 = 0

This is the standard format for a solvable zero polynomial. Solve for the zeros by finding which numbers make the statement true:

(x-8)(x-3)=0

(8-8)(8-3)= 0 * 5 = 0

(3-8)(3-3) = -5 * 0 = 0

x can equal 8 or 3

8^2 + 3^2 = 73 or

64 + 9 = 73

So one square will have a side with length 8ft and the other will have a side with length 3 ft.

2006-12-31 12:42:35 · answer #2 · answered by Rockstar 6 · 0 0

fedest.com, questions and answers