a = - 2
2a² - 4a =
2(- 2)² - 4(- 2) =
2(4) - 4(- 8) =
8 + 8 =
16
- - - - - - - - - - -
- 11a - 14b + 6a - 7b =
- 5a - 21b
- - - - - - - - - - - -
4c - 3c² -(4c + 2c²) =
4C - 3C² - 4C - 2c² =
- 5c²
- - - - - - - - s-
2006-12-22 02:41:16
·
answer #1
·
answered by SAMUEL D 7
·
1⤊
0⤋
1. 2a^2- 4a for a= -2
ie; replace a for (-2)
[2(-2)^2] - [4(-2)]=
2(4) - 4(-2)=
8+8=16 Ans
2. -11a - 14b + 6a - 7b =
bring the like terms together
-11a + 6a - 14b -7b =
-5a - 21b Ans
3. 4c - 3c^2 - (4c + 2c^2)=
Open the bracket
4c - 3c^2 - 4c + 2c^2 =
4c - 4c - 3c^2 - 2c^2 =
-5c^2 Ans
2006-12-22 01:11:50
·
answer #2
·
answered by cajadman 3
·
0⤊
0⤋
Evaluate:
2a² - 4a => for a = -2
2(-2)² - 4(-2) = 8 + 8 = 16
Simplify:
-11a - 14b + 6a - 7b
-5a + 21b
Simplify:
4c - 3c² - (4c + 2c²) =
-3c² -2c² = -5c²
::
2006-12-22 00:59:43
·
answer #3
·
answered by aeiou 7
·
1⤊
0⤋
2a^2 - 4a for a = -2
2*(-2)^2-4*-2 = 8+8=16
-11a - 14b + 6a - 7b simplifies to
-5a-21b collecting a's and b's
Simplify: 4c - 3c^2 - (4c + 2c^2)
opening brackets
4c - 3c^2 - 4c - 2c^2
= -5c^2
2006-12-22 00:55:15
·
answer #4
·
answered by Selphie 3
·
0⤊
0⤋
1. 2a^2 - 4a
*The problem gives us the value for "a" which is (-2) > take
First: take (-2) and replace it with "a" >>>
= 2(-2^2) - 4 (-2)
= 2(4) + 8
= 8 + 8
= 16
2. -11a - 14b + 6a - 7b
First: combine "like" terms >>>
= - 11a + 6a - 14b - 7b
= -5a - 21b
3. *Just get rid of parenthesis and combine "like" terms...give it a try
2006-12-22 03:33:26
·
answer #5
·
answered by ♪♥Annie♥♪ 6
·
0⤊
0⤋
1) 2 (-2)^2 - 4 (-2) = 2 (4) +8 = 8+8=16
2) -11a+6a-14b-7b=-5a-21b
3) 4c-3c^2-4c-2c^2 = -3c^2-2c^2=-5c^2
2006-12-22 00:54:59
·
answer #6
·
answered by Professor Maddie 4
·
1⤊
0⤋
1) [2(-2)^2]-[4(-2)]
=[2*4]+8
=8+8
=16.
2)-11a-14b+6a-7b
=-5a-21b.
3)4c-3c^2-(4c+2c^2)
=4c-3c^2-4c-2c^2
=-5c^2.
2006-12-22 01:00:33
·
answer #7
·
answered by vasanth 1
·
0⤊
0⤋
From mere inspection we write
1] 8+8=16
2]-5a-21b
3]-5c^2
2006-12-22 03:00:19
·
answer #8
·
answered by openpsychy 6
·
0⤊
0⤋
24
5a-21b
-c^2
2006-12-22 00:55:18
·
answer #9
·
answered by Anonymous
·
1⤊
1⤋