You need the density of ice. I think it is 920kg/m^3.
The volume of ice is 480^2*PI * 0.01 = 6659.6m^3.
Multiply the density by the volume yields 6.66*10^6 kg (6659.2 metric tonnes).
2006-12-18 06:06:13
·
answer #1
·
answered by Bayou Brigadier 3
·
1⤊
0⤋
This problem is basically telling you that the sheet of ice is a giant cylinder. That said, the volume of a cylinder is equal to the area of the top circle (pi * r^2) times the height (thickness). Take a look at the units of the density, and you should be able to figure out how to get the mass.
2006-12-18 06:05:59
·
answer #2
·
answered by woocowgomu 3
·
1⤊
0⤋
OK, the mass is the volume times the density, right? Call this v*d
The volume is the area times the thickness.
The area is two*pi*radius^2
So, the mass = v*d
= .01m*2*pi*radius^2 * d
The density of ice is approximatly 1 gm/cubic centimeter, maybe a little less because it's ice which is lighter than water. If we use 1 gm/cc, and convert units to cubuc meters and grams to kg, then we have 1 gm/cc*10^6 cc/cubic meter * 1 kg/1000 gm
= 1000 kg/cubic meter
So mass = .01*2*pi*radius^2*1000
But ice really has a density 92% of water, so to be more precise,
mass = .01*2*pi*480*480*920
You can do the multiplication (and make sure I haven't dropped any numbers)
2006-12-18 06:05:27
·
answer #3
·
answered by firefly 6
·
1⤊
0⤋
First, you will need the density of water. If I remember correctly, then the density of pure water is 1 gram over 1 cubic centimeter. Next, you need to calculate the volume of that piece of ice. You have the radius, and the thickness, and pi. The volume formula for a circular object is V=pi*R*R*H. Pi is 3.14; R is the radius, and H is the thickness. Once you have the volume of the piece of ice, use the density of pure water and multiply that by the volume; and you will have the mass of the ice.
2006-12-18 06:32:54
·
answer #4
·
answered by Cu Den 2
·
0⤊
1⤋
Hey alexqr79, m^3 is a measure of volume, not mass. Not only that, but your answer such as it is can only be expressed to a precision of at most three significant digits.
And Cu Den, the density of ice is less than that of water - that's why ice floats.
Anyway, the volume of a cylinder = pi * r^2 * h. Take it from there.
2006-12-18 06:39:05
·
answer #5
·
answered by hznfrst 6
·
0⤊
0⤋
Basically you'll need the equation for the volume of a cylinder.
V=bh=Pir^2h
(Volume = base x height = Pi x radius squared x height.)
Plug in the information for radius and height (thickness). Density is a ratio of mass and volume. (d = m/v) By rearranging the values you'll get dv=m. It's all plug and chug now!
2006-12-18 06:10:11
·
answer #6
·
answered by ChocolateGirl177 2
·
0⤊
0⤋
First, use the radius to find the volume:
Area = pi * r^2
Volume = Area * thickness
Then use the volume and density to find the mass:
Mass = Volume * Density = m^3 * kg/m^3
Since this is likely your homework, I'll not do the problem,
but I can explain how it works to help you.
2006-12-18 06:13:22
·
answer #7
·
answered by themountainviewguy 4
·
0⤊
0⤋
yet yet yet another easy homework question. First you will opt to calculate the quantity of the mattress. volume = HxWxL, so V=2.51 x 0.ninety 9 x 0.121 (consequence could be in cubic meters). Multiply that with suggestions from one thousand, as a million cubic meter weighs one thousand kg to substantiate the equivalent mass of water. then you could opt to subtract the load of the mattress to get you very very final answer in kg. So your answer is (a million.2x0.99x0.121x1000) - a million.2= the mass the dry mattress can help in sparkling water.
2016-12-15 03:38:41
·
answer #8
·
answered by tollefson 4
·
0⤊
0⤋
Find the volume of the ice layer.
Volume is (v) = πr²h
r = radius
h = thickness of the ice
Once you get this value, then use the fact that density (volumetric is usually given by ρ) is gives by: ρ = m/v
m = mass
v = volume
Then find mass (m), by plugging your numbers into this equation....m = ρv
2006-12-18 06:05:06
·
answer #9
·
answered by Anonymous
·
1⤊
0⤋
Sorry, the only ice I know about is what I put in my martini...lot more fun than the math, but you got your answer...wish we had this when I was doing homework!!!!! lol...happy holidays...
2006-12-18 06:07:43
·
answer #10
·
answered by Anonymous
·
0⤊
0⤋