English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

There is a group of Geometry students I am working with, and there is a homework packet we have to finish. There was a question we came across and we are unsure of how to solve it.

Prove: The sum of the lengths of the perpendicular segments drawn from any point in the base of an isosceles triangle to the legs is equal to the length of the altitude drawn to one of the legs.

We have to find the picture/figure for it first and then reason it out. Can anyone help us?

2006-12-16 10:32:44 · 3 answers · asked by annoyingsquirrel 1 in Science & Mathematics Mathematics

3 answers

I drew a picture in MS paint which I can forward to you if you email me at a_math_guy at yahoo. The picture isn't that great. (I don't see attach as an option here.) Basically, imagine two long sides of an isosceles triangle connected at the bottom by a short base. Pick any point on the base (bottom) and draw perpendiculars to the two legs above it. This forms a sort of L shape with the joint of the L lying on the base. Add these two lengths. (That is one value.) The other value is the altitude that crosses (say) from the lower left hand point to the leg on the right. While I was drawing it in Paint I guessed at a possible proof (a first try), but your post indicates that you want to work on it some. I could give a hint for what I am thinking: the diagonals of a (symmetric? regular?) trapezoid are equal. Anyway, email me and I can forward what I drew in MSPaint as an attachment.

You could also try to solve it analytically: say the vertices for the traingle are (0,0), (2,0) and (1,y) and the point on the base is (x,0) with x between 0 and 2. Then solve all those distances using trigonometry and algebra.

I tried to load the file into my profile but I can't seem to do it without yahoo 360 and I just hate that so...............

2006-12-16 11:02:55 · answer #1 · answered by a_math_guy 5 · 0 0

Prove: The sum of the lengths of the perpendicular segments drawn from any point in the base of an isosceles triangle to the legs is equal to the length of the altitude drawn to one of the legs.

Diagram: http://i130.photobucket.com/albums/p248/WalC_photos/IsoscTriangle.jpg

Data: ΔABC is isosceles with AB = AC

Constructions:

Choose D on BC

Draw perpendiculars from D onto AB (meeting AB at E) and onto AC (meeting AC at F). and from B onto AC (meeting AC at F)

Join AD

Proof:

Area ΔABD = ½ AB * DE
Area ΔACD = ½ AC * DF

Also Area ΔABC = ½ AC * BG

But Area ΔABC = Area ΔABD + Area ΔACD
= ½ AB * DE + ½ AC * DF

Since ΔABC is isosceles, AB = AC (Data)

So ½ AB * DE + ½ AC * DF = ½ AC * DE + ½ AC * DF
= ½ AC (DE + DF)

Therefore ½ AC (DE + DF) = ½ AC * BG

So BG = DE + DF … QED

You can similarly show that this sum = length of altitude drawn from C onto AB ( as Area ΔABC = ½ AB * (altitude from C))

ie The sum of the lengths of the perpendicular segments drawn from any point in the base of an isosceles triangle to the legs is equal to the length of the altitude drawn to one of the legs

Thank you for this question ... I have never seen this before!!

2006-12-16 12:42:12 · answer #2 · answered by Wal C 6 · 0 0

a million. The kind of variables, the path a student ought to is going with the help of to unravel the precedence, and the order of the equation. 2. No they cant, because I do like math, and that i love mathematical and programming challange. 3. i will assign a difficult difficulty on condition that i imagine that may make the student extra inventive. that is ineffective for instance to furnish a student a linear equation difficulty with 10 variables, this kind of difficulty is larger given to a computing gadget. a difficulty given to a man or woman should be able to make the guy extra inventive. 4. i imagine there's a center mistake about the present equipment of education. Many instructor practice their student to get A in issues that's human beings area, extremely of practice their student to locate the position they could come across a in themselves. A man or woman is a inventive being not a computational equipment, or an information storage. we've a large number of computation power and difficult disk area for that.

2016-11-30 20:51:56 · answer #3 · answered by Anonymous · 0 0

fedest.com, questions and answers