English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Does the amount of Vitamin C relate to the fruit being sweet or sour?

2006-12-16 03:48:05 · 4 answers · asked by Anonymous in Science & Mathematics Biology

4 answers

Vitamin C is citric acid or ascorbic acid. It can be found in sour fruits such as lemons, limes, oranges, and grapefuit as well as tomatoes. These fruits would be categorized as sour.

Vitamin C is also used to prevent browning of foods when cooking. This is why we use lemon juice on things like sliced apples, pears, bananas, and avocado. It prevents the oxidation caused by oxygen reacting with chemicals in the cut fruit.

2006-12-16 04:02:26 · answer #1 · answered by Gary D 7 · 0 1

Acids are sour to taste based on this property we can say vitamin C relates to sourness.

2006-12-16 10:28:14 · answer #2 · answered by moosa 5 · 0 0

Generally yes if you are just talking about the Citric Acid (Vitamin C). Acids generally sour the taste of things.

2006-12-16 03:55:51 · answer #3 · answered by homerbethy 2 · 0 0

Vitamin C is a water-soluble nutrient and human vitamin essential for life and for maintaining optimal health, used by the body for many purposes. It is also known by the chemical name of its principal form, L-ascorbic acid. The article on ascorbic acid contains information on its chemical properties. This article describes its biological functions, discovery and the debate on how it is used by society.

General description

Chemical structure of vitamin CVitamin C is a weak acid, called ascorbic acid or a salt ascorbate. It is the L-enantiomer of ascorbic acid. The D-enantiomer shows no biological activity. Both are mirror image forms of the same chemical molecular structure (see optical isomers).

The active part of the substance is the ascorbate ion, which can express itself as either an acid or a salt of ascorbate that is neutral or slightly basic. Commercial vitamin C is often a mix of ascorbic acid, sodium ascorbate and/or other ascorbates. Some supplements contain in part the D-enantiomer, which is useless and harmless. See the ascorbic acid article for a full description of the molecule's chemical properties.


Synthesis in organisms

Model of the Vitamin C (L-ascorbic acid) molecule. Black is carbon, red is Oxygen and white is HydrogenAlmost all animals and plants synthesize their own vitamin C. There are some exceptions, such as humans and a small number of other animals, including, apes, guinea pigs, the red-vented bulbul, a fruit-eating bat and a species of trout. This has led some scientists, including chemist Linus Pauling to hypothesize that these species lost the ability to produce their own Vitamin C, and that if their diets were supplemented with an amount of the nutrient proportional to the amount produced in animal species that do synthesize their own Vitamin C, better health would result. The species-specific loss of the ability to synthesize ascorbate strikingly parallels the evolutionary loss of the ability to break down uric acid. Uric acid and ascorbate are both strong reducing agents (electron-donors). This has led to the suggestion [2] that in higher primates, uric acid has taken over some of the functions of ascorbate. Ascorbic acid can be broken down by ascorbic acid oxidase an enzyme which catalyes the oxidation of ascorbic acid.

Some microorganisms such as the yeast Saccharomyces cerevisiae have been shown to be able to synthesize ascorbic acid.


Discovery

Albert Szent-Györgyi, pictured here in 1948, was awarded the 1937 Nobel Prize in Medicine for the discovery of Vitamin CSee Discovery and history section below for a fuller account.
Vitamin C was first isolated in 1928, and in 1932 it was proved to be the agent which prevents scurvy. Both Charles Glen King at the University of Pittsburgh and Albert Szent-Györgyi (working with ex-Pittsburgh researcher Joseph Svirbely) came to discover what is now known as Vitamin C around April of 1932. Although Szent-Györgyi was awarded the 1937 Nobel Prize in Medicine, many feel King is as responsible for its development if not more so. A detailed history of Vitamin C is provided below.


Vitamin C deficiency
No bodily organ stores ascorbate as a primary function, and so the body soon depletes itself of ascorbate if fresh supplies are not consumed through the digestive system, eventually leading to the deficiency disease known as scurvy (a form of avitaminosis), which results in illness and death if consumption of vitamin C is not resumed in time.


Daily requirements and dose dependent effects
There is continuing debate within the scientific community over the best dose schedule (the amount and frequency of intake) of Vitamin C for maintaining optimal health in humans.


Government agency recommended intake levels
A balanced diet without supplementation contains enough Vitamin C to prevent acute scurvy in an average healthy adult. For people who smoke, those under stress, and pregnant women it takes slightly more.

Recommendations for vitamin C intake have been set by various national agencies as described below:

40 mg per day: Food Standards Agency (United Kingdom)[2]
60–95 mg per day, Dietary Reference Intake (DRI), Recommended Daily Allowance (RDA), United States Food and Nutrition Board 2004.[3] The U.S. Dietary Reference Intake Tolerable Upper Intake Level (UL) for a 25-year old male is 2,000 mg/day. Vitamin C is recognized to be one of the least toxic substances known to medicine. Its LD50 for rats is 11,900 mg kg-1 [6], [7],[8].

Independent dose recommendations
Some researchers have calculated the amount needed for an adult human to achieve similar blood serum levels as Vitamin C synthesising mammals as follows:

400 mg per day – Linus Pauling Institute & US National Institutes of Health (NIH) Recommendation.
500 mg twice per day – Professor Roc Ordman's recommendation in free radical research. [4]
3000 mg per day or more during illness or pregnancy (up to 300g for some illnesses) – Vitamin C Foundation's recommendation. [5]
6000-12000 mg per day – Thomas Levy, Colorado Integrative Medical Centre recommendation.
6000-18000 mg per day – Linus Pauling's own daily recommendation
from 3000 mg to 200,000 mg per day based on a protocol described by Robert Cathcart[6] known as a vitamin C flush wherin escalating doses of Vitamin C are given until diarrhea develops, then choosing the highest dose that does not cause diarrhea (bowel tolerance threshold). High doses (thousands of mg) may result in diarrhea, which is harmless if the dose is reduced immediately. Some researchers[6] claim the onset of diarrhea to be an indication of where the body’s true vitamin C requirement lies. Both Cathcart[6] and Cameron have demonstrated that very sick patients with cancer or influenza do not display any evidence of diarrhea at all until ascorbate intake reaches levels as high as 200 grams (½ pound).

High dose advocacy arguments
There is a strong advocacy movement for large doses of Vitamin C (see Advocacy arguments below), although not all purported benefits are supported by the medical establishment. Many pro-Vitamin C organizations promote usage levels well beyond the current Dietary Reference Intake (DRI).

In summary the biological halflife for vitamin C is quite short, about 30 minutes in blood plasma, a fact which high dose advocates say NIH and IM researchers have failed to recognize. NIH researchers established the current RDA based upon tests conducted 12 hours (24 half lives) after consumption. "To be blunt," says Hickey, "the NIH gave a dose of vitamin C, waited until it had been excreted, and then measured blood levels." [14] NIH don't take into account individual differences such as age, weight, etc. For example, heavier individuals generally need more vitamin C. They point out the figures represent the amount needed to prevent the acute form of deficiency disease, while subclinical levels of the disease are not even acknowledged. That the amount needed to prevent other diseases is not considered. Optimal health is not a consideration, as the level of health targeted is that which is only marginally better than that which is considered malnourished.

Therapeutic applications and doses
Vitamin C is needed in the diet to prevent scurvy, however, from the time it became available in pure form in the 1930s, some practitioners experimented with vitamin C as a treatment for diseases other than scurvy.


[edit] Colds
At least 29 controlled clinical trials (many double-blind and placebo-controlled) involving a total of over 11,000 participants have been conducted into vitamin C and the Common cold. These trials were reviewed in the 1990s[17][18] and again recently.[9] The trials show that vitamin C reduces the duration and severity of colds but not the frequency. The data indicate that there is a normal dose-response relationship. Vitamin C is more effective the higher the dose. The vast majority of the trials were limited to doses below 1 g/day. As doses rise, it becomes increasingly difficult to keep the trials double blind because of the obvious gastro-intestinal side effects. So, the most effective trials at doses between 2 and 10 g/day are met with skepticism. Reports from physicians have provided ample clinical confirmation.[10]

The controlled trials and clinical experience prove that vitamin C in doses ranging from 0.1 to 2.0 g/day have a relatively small effect. The duration of colds was reduced by 7% for adults and 15% for children. The studies provide ample justification for businesses to encourage their employees to take 1 to 2 g/day during the cold season to improve workplace productivity and reduce sick days. The clinical reports provide the strongest possible evidence that vitamin C at higher doses is significantly more effective. However, the effectiveness typically comes at the price of gastro-intestinal side effects. It is easy for physicians to minimize these side effects since they cause no lasting harm. Adult patients, however, have proven reluctant to subject themselves to gas and cramping to deliver an unknown benefit (the duration and severity of colds is highly variable so the patient never knows what he/she is warding off). It is well worth the effort of identifying the small subset of individuals who can benefit from high daily doses (>10 g/day) of vitamin C without side effects and training them to regularly take 5 g/day during cold season and to increase the dose at the onset of a cold.

The trials proved that vitamin C is more effective for children. Reports from the field confirm the observations in the trials and suggest that children are less prone to vitamin C side effects.[11] Colds and flu are a serious problem for children. Every time a cold infects a child, its growing mind and body must divert energy from its usual business of growth and development. If the cold is followed by an opportunistic infection, such as bronchitis or ear infection, more energy must be diverted. Colds are the number one trigger for asthma.[12] Pre-school children in daycare are nearly constantly fighting infections (5-10 per year).[13] Chronic disease in childhood is believed to sometimes have permanent developmental consequences which can contribute to decreased life expectancy.[14]


[edit] Polio
Most notable was Fred R. Klenner, a doctor in general practice in Reidsville, North Carolina. He utilized both oral and intravenous vitamin C to treat a wide range of infections and poisons. He published a paper in 1949 that described how he had seen poliomyelitis yield to vitamin C in sufficiently large doses.[15] No controlled clinical trials have been conducted to confirm effectiveness.[16]


[edit] Heart disease
Vitamin C is the main component of the three ingredients in Linus Pauling's patented preventive cure for Lp(a)[19] related heart disease, the other two being the amino acid lysine and nicotinic acid (a form of Vitamin B3). Lp(a) as an atherosclerotic, evolutionary substitute for ascorbate[20] is still discussed as a hypothesis by mainstream medical science[21] and the Rath-Pauling related protocols[22] have not been rigorously tested and evaluated as conventional medical treatment by the FDA.


[edit] Viral diseases, and poisons
Orthomolecular medicine and a minority of scientific opinion sees vitamin C as being a low cost and safe way to treat viral disease and to deal with a wide range of poisons.

Vitamin C has a growing reputation for being useful in the treatment of colds and flu, owing to its recommendation by prominent biochemist Linus Pauling. In the years since Pauling's popular books about vitamin C, general agreement by medical authorities about larger than RDA amounts of vitamin C in health and medicine has remained elusive. Ascorbate usage in studies of up to several grams per day, however, have been associated with decreased cold duration and severity of symptoms, possibly as a result of an antihistamine effect [17]. The highest dose treatments, published clinical results of specific orthomolecular therapy regimes pioneered by Drs. Klenner (repeated IV treatments, 400-700+ mg/kg/day [18][19]) and Cathcart (oral use to bowel tolerance,[6] up to ~150 grams ascorbate per day for flu), have remained experimentally unaddressed by conventional medical authorities for decades.

The Vitamin C Foundation recommends an initial usage of up to 8 grams of vitamin C every 20-30 minutes [20] in order to show an effect on the symptoms of a cold infection that is in progress. Most of the studies showing little or no effect employ doses of ascorbate such as 100 mg to 500 mg per day, considered "small" by vitamin C advocates. Equally importantly, the plasma half life of high dose ascorbate is approximately 30 minutes, which implies that most high dose studies have been methodologically defective and would be expected to show a minimum benefit. Clinical studies of divided dose supplementation, predicted on pharmacological grounds to be effective, have only rarely been reported in the literature. Essentially all the claims for high dose vitamin C remain to be scientifically refuted. The clinical effectiveness of large and frequent doses of vitamin C is an open scientific question.

In 2002 a meta-study into all the published research on effectiveness of ascorbic acid in the treatment of infectious disease and toxins was conducted, by Thomas Levy, Medical Director of the Colorado Integrative Medical Centre in Denver. He claimed that evidence exists for its therapeutic role in a wide range of viral infections and for the treatment of snake bites.

Therapeutic applications and doses
Vitamin C is needed in the diet to prevent scurvy, however, from the time it became available in pure form in the 1930s, some practitioners experimented with vitamin C as a treatment for diseases other than scurvy.


[edit] Colds
At least 29 controlled clinical trials (many double-blind and placebo-controlled) involving a total of over 11,000 participants have been conducted into vitamin C and the Common cold. These trials were reviewed in the 1990s[17][18] and again recently.[9] The trials show that vitamin C reduces the duration and severity of colds but not the frequency. The data indicate that there is a normal dose-response relationship. Vitamin C is more effective the higher the dose. The vast majority of the trials were limited to doses below 1 g/day. As doses rise, it becomes increasingly difficult to keep the trials double blind because of the obvious gastro-intestinal side effects. So, the most effective trials at doses between 2 and 10 g/day are met with skepticism. Reports from physicians have provided ample clinical confirmation.[10]

The controlled trials and clinical experience prove that vitamin C in doses ranging from 0.1 to 2.0 g/day have a relatively small effect. The duration of colds was reduced by 7% for adults and 15% for children. The studies provide ample justification for businesses to encourage their employees to take 1 to 2 g/day during the cold season to improve workplace productivity and reduce sick days. The clinical reports provide the strongest possible evidence that vitamin C at higher doses is significantly more effective. However, the effectiveness typically comes at the price of gastro-intestinal side effects. It is easy for physicians to minimize these side effects since they cause no lasting harm. Adult patients, however, have proven reluctant to subject themselves to gas and cramping to deliver an unknown benefit (the duration and severity of colds is highly variable so the patient never knows what he/she is warding off). It is well worth the effort of identifying the small subset of individuals who can benefit from high daily doses (>10 g/day) of vitamin C without side effects and training them to regularly take 5 g/day during cold season and to increase the dose at the onset of a cold.

The trials proved that vitamin C is more effective for children. Reports from the field confirm the observations in the trials and suggest that children are less prone to vitamin C side effects.[11] Colds and flu are a serious problem for children. Every time a cold infects a child, its growing mind and body must divert energy from its usual business of growth and development. If the cold is followed by an opportunistic infection, such as bronchitis or ear infection, more energy must be diverted. Colds are the number one trigger for asthma.[12] Pre-school children in daycare are nearly constantly fighting infections (5-10 per year).[13] Chronic disease in childhood is believed to sometimes have permanent developmental consequences which can contribute to decreased life expectancy.[14]


[edit] Polio
Most notable was Fred R. Klenner, a doctor in general practice in Reidsville, North Carolina. He utilized both oral and intravenous vitamin C to treat a wide range of infections and poisons. He published a paper in 1949 that described how he had seen poliomyelitis yield to vitamin C in sufficiently large doses.[15] No controlled clinical trials have been conducted to confirm effectiveness.[16]

2006-12-16 04:51:18 · answer #4 · answered by THE UNKNOWN 5 · 0 0

fedest.com, questions and answers