English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Evaluate the indefinite integral
∫(sin^3 x+sinx cos^2 x) dx
u= cosx
du= -sinx dx

2006-12-14 07:25:41 · 2 answers · asked by j10oreo 1 in Science & Mathematics Mathematics

Yes,
it can be re-written as:
∫sin^3 x dx + ∫sinx cos^2 x dx
But I dont know where to go from here.
u= cosx
du=-sinx dx

2006-12-14 07:55:09 · update #1

2 answers

∫(sin^3 x+sinx cos^2 x) dx
= ∫sinx (sin² x+ cos² x) dx
= ∫sinx dx
= -cosx + C.

No substitution needed.

2006-12-14 07:30:03 · answer #1 · answered by Anonymous · 1 0

∫(sin^3 x dx + ∫sinx cos^2 x) dx=?

2006-12-14 15:29:09 · answer #2 · answered by iyiogrenci 6 · 0 1

fedest.com, questions and answers