English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

1 answers

Make the substitution u = ln(x). Then du = (1/x)dx

∫2*ln(x) * dx/x = ∫2*udu =2* (u^2)/2=u^2. Put back u=ln(x) to get the result l[n(x)]^2. The integral value is then [ln(2)]^2 - [ln(1)]^2 = [ln(2)]^2

2006-12-13 13:58:10 · answer #1 · answered by gp4rts 7 · 0 0

fedest.com, questions and answers