English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

4 answers

x^2-y^2+1=5y(x-1)
putting x=1
1-y^2+1=0
y^2=2
y=+/-rt2
similarly byascribing values to x we can getthe corresponding values of y

aliter
x^2-5xy-(y^2-5y-1)=0
x=[5y+/-rt{25y^2+4(y^2-5y-1)}]/2
=[5y+/-rt{29y^2-20y-4}]/2
now for differentvalues of y we can get the correspondingvalues of x

2006-12-13 01:30:10 · answer #1 · answered by raj 7 · 0 0

This is a simple cubic: x^3-yx+y=0, which has the following three solutions: x1= -((2 3^(1/3) y + 2^(1/3) (9 y + Sqrt[3] Sqrt[(27 - 4 y) y^2])^(2/3))/( 6^(2/3) (9 y + Sqrt[3] Sqrt[(27 - 4 y) y^2])^(1/3))) x2= ( 2 (3 i + Sqrt[3]) y + 2^(1/3) 3^( 1/6) (1 - i Sqrt[3]) (9 y + Sqrt[3] Sqrt[(27 - 4 y) y^2])^(2/3))/( 2 2^(2/3) 3^(5/6) (9 y + Sqrt[3] Sqrt[(27 - 4 y) y^2])^( 1/3)) x3= ( 2 (-3 i + Sqrt[3]) y + 2^(1/3) 3^( 1/6) (1 + i Sqrt[3]) (9 y + Sqrt[3] Sqrt[(27 - 4 y) y^2])^(2/3))/( 2 2^(2/3) 3^(5/6) (9 y + Sqrt[3] Sqrt[(27 - 4 y) y^2])^(1/3))

2016-05-23 17:37:17 · answer #2 · answered by Carissa 4 · 0 0

Set 5xy-5y =0
This gives x =1
Set x^2-y^2+1= 0
Put x=1 in above equation, getting
1 -y^2 +1 = 0 so ,
-y^2=-2
y= +/- sqrt(2)

This is a solution to your problem

2006-12-13 01:53:45 · answer #3 · answered by ironduke8159 7 · 0 1

ummm..... 5x^3y+5y^3=1 no?

2006-12-13 01:25:06 · answer #4 · answered by Paris, je t'aime 5 · 0 2

fedest.com, questions and answers