3x-2x=8+7
x=15
8x-2x=12
6x=12
x=2
10x-5x-3x=6-8+4
2x=2
x=1
3x=6+2y
x=6+2y/3
2006-12-12 00:59:12
·
answer #1
·
answered by Anonymous
·
1⤊
0⤋
1).
3x - 7 = 2x + 8
x = 15
2).
8x - 11 = 2x + 1
x = 2
3).
10x - 4 - 5x = 6 + 3x - 8
x = 1
4).
3x - 2y = 6
x = (2/3)y + 2
2014-12-28 11:40:53
·
answer #2
·
answered by Krishnamurthy 7
·
0⤊
0⤋
(1)3x-7=2x+8 x=15 (2)8x-11=2x+1 x=2 (3)10x-4-5x=6+3x-8 x=-1 (4)3x-2y=6 x=(6+2y)/3
2006-12-12 01:51:57
·
answer #3
·
answered by Kenneth Koh 5
·
1⤊
0⤋
3x-7 = 2x-8 solution x=15
8x-11 = 2x+1 6x =12 x=2
10x -4-5x = 6+3x-8 = 3x-2 =5x-4 x=1
3x-2y =6 x = 2 +2/3 *y
2006-12-12 01:02:55
·
answer #4
·
answered by maussy 7
·
1⤊
0⤋
3x-7=2x+8
x=15
8x-11=2x+1
x=2
10x-4-5x=6+3x-8
2x-4= -2
x=1
3x-2y=6
3x+2y=6
x=2(i think)
2006-12-12 09:11:52
·
answer #5
·
answered by ♥KiYa♥ 3
·
0⤊
0⤋
x=15
2016-03-29 04:19:04
·
answer #6
·
answered by Claire 4
·
0⤊
0⤋
1)3x-7=2x+8
x-7=8
x=15
Check:
3(15)-7=2(15)+8
45-7=30+8
38=38
2)8x-11=2x+1
6x-11=1
6x=12
x=2
Check:
8(2)-11=2(2)+1
16-11=4+1
5=5
3)10x-4-5x=6+3x-8
5x-4=3x-2
2x-4=-2
2x=2
x=1
Check:
10(1)-4-5(1)=6+3(1)-8
10-4-5=6+3-8
10-9=9-8
1=1
4)3x-2y=6
Add 2y to both sides:
3x=2y+6
Divide 3 to both sides:
x=2/3y+2
2006-12-12 02:24:35
·
answer #7
·
answered by Anonymous
·
0⤊
0⤋
Hope this helps. I totally screwed up the first time.
3x-7=2x+8
3x=2x+15
x=15
8x-11=2x+1
8x=2x+12
6x=12
x=2
10x-4-5x=6+3x-8
5x-4=3x-2
5x=3x+2
2x=2
x=1
3x-2y=6
3x=2y+6
x=(2y+6)/3
2006-12-12 01:01:56
·
answer #8
·
answered by Anonymous
·
1⤊
1⤋
1) x= 15
2) X= 2
3) X= 1
4) X= 6+2y/3
so x could be 4 and y could be 3.
2006-12-12 01:09:33
·
answer #9
·
answered by Karthikeyan 2
·
1⤊
0⤋
3x-7=2x+8
adding -2x-8
x-15=0
x=15
2.8x-11=2x+1
adding -2x-1
6x-12=0
adding 12
6x=12
dividing by 6
x=2
3.10x-4-5x=6+3x-8
simplifying
5x-4=3x-2
adding -3x+2
2x-2=0
adding 2
2x=2
dividing by 2 x=1
4.3x-2y=6
adding 2y
3x=2y+6
=2(y+3)
dividing by 3
x=(2/3)(y+3)
2006-12-12 01:01:05
·
answer #10
·
answered by raj 7
·
2⤊
0⤋
solve for x
3x-7=2x+8
3x=2x+8+7
3x-2x=8+7
x=15
prove
3(15)-7=2(15)+8
45-7=30+8
38=38
2006-12-12 01:10:57
·
answer #11
·
answered by Jim P 1
·
1⤊
0⤋