English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-12-11 22:30:43 · 17 answers · asked by Anonymous in Science & Mathematics Physics

17 answers

Background

A hologram is a flat surface that, under proper illumination, appears to contain a three-dimensional image. A hologram may also project a three-dimensional image into the air—a lifelike image that can be photographed although it cannot be touched. Because they cannot be copied by ordinary means, holograms are widely used to prevent counterfeiting of documents such as credit cards, driver's licenses, and admission tickets. The word hologram comes from the Greek roots holos meaning whole and gramma meaning message. The process of making a hologram is called holography. When a hologram is made, light from a laser records an image of the desired object on film or a photographic plate.

There are basically two types of holograms. A reflection hologram is viewed when lit from the front, while a transmission hologram is viewed by shining a light through it from the back side. An embossed hologram is made by backing a transmission hologram with a mirror-like substance, which allows it to be viewed when lit from the front. Holograms can also be made that show moving objects; these sequences, called stereograms, are typically three to 20 seconds long.

Although a hologram is a visual image of a physical object, it is quite different from a photograph. For instance, when an object is photographed, each portion of the photo contains an image of the corresponding portion of the original object. Each section of a hologram, however, contains a complete image of the original object, viewed from a vantage point that corresponds to the section's position on the hologram. Thus, if the transparent plate containing a transmission hologram is broken, each piece will still be able to project the entire image, albeit from a different point of view. Using a piece from near the top of the holographic plate will produce an image as seen from above, while using a piece from near the bottom of the plate will create the impression of looking upward toward the object.

Another interesting property of holograms is that they preserve the optical properties of objects such as lenses. For instance, consider making a hologram of a magnifying glass placed in front of a butterfly. When viewing the holographic image of those objects, an observer will find that the portions of the butterfly seen through the image of the magnifying glass will be enlarged.

Holographic packaging has been shown to increase the sales of certain products. Projection holograms are especially eye-catching and are used at trade shows and retail stores. They can be used to display extremely delicate or valuable objects. A classic example was an image of a diamond-adorned hand that was projected over the sidewalk outside the Cartier jewelry store in New York City in 1970. Not only did it catch the attention of people walking by it, it attracted television news crews. In fact, it was even attacked by an umbrella-wielding pedestrian who thought it was the "work of the devil." In another instance, rather than repeatedly handling the fragile skull of the 2,300 year old Lindow Man, researchers studied its holographic image. Scotland Yard's Forensic Science Department used this holographic image to construct a physical model of the remains of the prehistoric man. As yet another application of holography, former Chicago Bears football coach Mike Ditka displayed a holographic portrait of himself in his restaurant to create a somewhat personal image when he could not be there in person.

Holograms can be made at home by hobbyists for a modest investment in equipment. The process requires a laser and an isolation table to prevent movement of the equipment while the film is being exposed. Holograms are also produced commercially and can be reproduced in large quantities. Using stock artwork, a master hologram for mass production can be created for as little as $2,500, whereas using custom artwork can cost $5,000 to $10,000. Reproducing the image costs from 1 to 4 cents per inch (2.5 cm), depending on the volume; this represents a 40% decrease since embossed holograms were first marketed in the late 1970s. Finished holograms can be attached to other objects as pressure-sensitive labels (0.5 to 1.5 cents each) or by hot stamping (2 to 5 cents each). Once the artwork is finalized, it takes about three months to create and reproduce a batch of commercial holograms. It is estimated that more than $200 million worth of embossed holograms were manufactured in 1995.

History

The first hologram was made in 1947 by Dennis Gabor, a Hungarian-born scientist who was working at the Imperial College of London. Gabor was attempting to refine the design of an electron microscope. He devised a new technique, which he decided to test with a filtered light beam before trying it with an electron beam. Gabor made a transmission hologram by carefully filtering his light source, but the process did not become practical until technology provided a way to produce coherent light—light that consists of a single frequency and a single wavelength. Hologram production took off with the invention of the laser in 1960, as a laser generates light that is of a single color (frequency) and produces waves that travel in phase with one another.

In 1962, using a laser to replicate Gabor's holography experiment, Emmett Leith and Juris Upatnieks of the University of Michigan produced a transmission hologram of a toy train and a bird. The image was clear and three-dimensional, but it could only be viewed by illuminating it with a laser. That same year Uri N. Denisyuk of the Soviet Union produced a reflection hologram that could be viewed with light from an ordinary bulb. A further advance came in 1968 when Stephen A. Benton created the first transmission hologram that could be viewed in ordinary light. This led to the development of embossed holograms, making it possible to mass produce holograms for common use.

Nearly a quarter century after he had made the first hologram, Gabor was awarded the Nobel Prize for Physics for this achievement in 1971. The following year, Lloyd Cross made the first recording of a moving hologram by imprinting sequential frames from ordinary moving picture film onto holographic film.

Raw Materials

Holograms made by individuals are usually exposed on very high resolution photographic film coated with a silver halide emulsion. Holograms made for mass production are exposed on a glass plate pretreated with iron oxide and then coated with photoresist. The photoresist material will chemically react to the specific wavelength of light that will be used to create the hologram. Because of their availability at a relatively low cost, helium-neon lasers are most commonly used by individuals who make their own holograms. Commercial hologram manufacturers use different laser types such as ruby, helium-cadmium, or krypton-argon ion.

After exposure, the film or photoresist plate is processed in chemical developers like those used in photography. Both nickel and silver are used to make the production masters that will be used to stamp multiple copies of the holograms onto polyester or polypropylene film. Aluminum is used to create the reflective coating on the back of embossed holograms.

Design

A three-dimensional, physical object can be used to create a hologram. The holographic image is normally the same size as the original object. This may require construction of a detailed scale model of the actual subject in a size suitable for the holographic image. Altematively, the artwork that is to be reproduced as a hologram can be computer generated, in which case software controls the laser exposure of the image file, one pixel at a time. (Pixels are the individual dots that comprise a graphic image on a computer screen or printout.)

The Manufacturing
Process

Various manuals are available that explain to amateur holographers how to make holograms at home. The following steps describe the commercial mass production of a holographic image of an actual, three-dimensional object.

Mastering

1 A laser is used to illuminate the physical object, with the reflected light falling on the photoresist plate. Simultaneously, a reference beam from the laser also falls directly on the photoresist plate. The interference patterns of these two light beams react with the photo-sensitive coating to record a holographic image of the object. Common exposure times are between one to 60 seconds. In photography, slight motion of the object or the film results in a blurred image. In holography, however, the exposed plate will be blank (contain no image at all) if during the exposure there is movement as small as one fourth the wavelength of the laser light (wavelengths of visible light range from 400 to 700 billionths of a meter).

A typical photoresist plate has a 6 in (15.24 cm) square working area; an extra half-inch (1.25 cm) of space on two edges allows the plate to be clamped into position. Because many holograms are smaller than this, several different images can be "ganged" (clustered) onto one plate, just as numerous individual photographs are exposed on one roll of film.

The plate on which the original hologram is recorded is called the master. After being exposed, the master is processed in a chemical bath using standard photographic developers. Before proceeding with production, the master is inspected to confirm that the image has been properly recorded. Because of the chemical reactions caused by the laser and the developer on the photoresist, the developed plate's surface resembles the surface of a phonograph record; there are about 15,000 grooves per inch (600 per cm), reaching a depth of about 0.3 microns (1 micron is a thousandth of a millimeter).
Electroforming

3 The master is mounted into a jig (frame) and sprayed with silver paint to achieve good electrical conductivity. The jig is lowered into a tank along with a supply of nickel. An electric current is introduced, and the master is electroplated with nickel. The jig is removed from the tank and washed with deionized water. The thin, nickel coating, which is called the metal master shim, is peeled off the master plate. It contains a negative image of the master hologram (the negative is actually a mirror image of the original hologram).

Using similar processes, several generations of shims are created. Those made from the metal master shim are known as "grandmothers," and they contain positive images of the original hologram. At this stage, numerous copies of the original image are "combined" (duplicated in rows) on one shim that can be used to print multiple copies with a single impression. Successive generations of shims are known as "mothers," "daughters," and "stamper shims." Because these generations alternate between negative and positive images of the original, the stamper shims are negative images that will be used during actual production runs to print the final product holograms.

Embossing

4 Stamper shims are mounted in embossing machines. A roll of polyester film (or a similar material) that has been smoothed with an acrylic coating is run through the machine. Under intense heat and pressure, the shim presses the holographic image onto the film, to a depth of 25 millionths of a millimeter. The embossed film is rewound onto a roll.

Metallizing

The roll of embossed film is loaded into a chamber from which the air is removed to create a vacuum. The chamber also contains aluminum wire, which is vaporized by heating it to 2,000°F (1,093°C). The sheet is exposed to the vaporized aluminum as it is rewound onto another roll, and in the process it becomes coated with aluminum. After being removed from the vacuum chamber, the film is treated to restore moisture lost under the hot vacuum condition. A top coating of lacquer is applied to the film to create a surface that can be imprinted with ink. The roll of film, which may be as wide as 92 in (2.3 m), is sliced into narrower rolls.
Converting

Depending on what type of film was used and what kind of product is being made, one or more finishing steps may be done. For instance, the film may be laminated to paper board to give it strength. The film is also cut into shapes desired for the final product and may be printed with messages. Heat-sensitive or pressure-sensitive adhesive is applied to the back of holograms that will be affixed to other objects or used as stickers.
Finishing

The holograms are either attached to other products or are counted and packaged for shipment.
The Future

Today, the most common use of holograms is in consumer products and advertising materials. There are some unusual applications too. For example, in some military aircraft, pilots can read their instruments while looking through the windshield by using a holographic display projected in front of their eyes. Automobile manufacturers are considering similar displays for their cars.

Holograms can be created without visible light. Ultraviolet, x-ray, and sound waves can all be used to create them. Microwave holography is being used in astronomy to record radio waves from deep space. Acoustical holography can look through solid objects to record images, much as ultrasound is used to generate images of a fetus within a woman's womb. Holograms made with short waves such as x rays can create images of particles as small as molecules and atoms.

Holographic television sets may project performers into viewers' homes within the next decade. Fiber optic communications systems will be able to transmit holographic images of people to distant homes of friends for realistic visits. Just as CD-ROM technology used optical methods to store large amounts of computer information on a relatively small disk, three-dimensional holographic data storage systems will further revolutionize storage capacities. It is estimated that this technology will store an amount of information equivalent to the contents of the Library of Congress in a space the size of a sugar cube..

2006-12-15 08:04:38 · answer #1 · answered by Anonymous · 0 2

If the universe is a hologram, then I'm a hologram ... woah. If they discover that the universe is a hologram, I'd contemplate the mind-blowing implications and probably flip out for a little while and then go on with my day. Nothing would be different other than the fact that we'd have a new piece of information about our universe, and we learn new and interesting things about our world every day. It would be just one more cool thing to appreciate. That article seems a little bit silly. I believe it's true, and I'm glad they're exploring it. I truly hope they discover something amazing, but it's a little bit silly.

2016-03-13 06:04:50 · answer #2 · answered by Anonymous · 0 0

Holograms are photographic images that are three-dimensional and appear to have depth. Holograms work by creating an image composed of two superimposed 2-dimensional pictures of the same object seen from different reference points. Holography requires the use of light of a single exact wavelength, so lasers must be used. In reflection holograms, the kind of holography that can be viewed in normal light, two laser beams and a photographic plate are used to take an image of the object.

Both laser beams used in a holograph go through beam spreaders, which spread the laser light out like a flashlight. The coherence of the beam is lost, but it remains an exact wavelength. One beam illuminates the object from the side. The other beam, known as a reference beam, travels through a photographic plate and hits the object head-on, similar to the way in which a conventional camera takes a 2-D image. The reflecting light from the reference beam leaves an image, or hologram, on the photographic plate, but so does the light reflected by the object from the side beam. The result is a photographic plate that registers two images simultaneously, creating a hologram.

When viewing any object, the human eyes each receive a distinct image, from slightly offset reference points. The brain combines them into a three-dimensional image. The hologram produces the same effect artificially.

& so on ******************

2006-12-12 04:01:00 · answer #3 · answered by veerabhadrasarma m 7 · 1 0

Holography was invented over Easter, 1947 by Hungarian physicist Dennis Gabor (1900–1979), for which he received the Nobel Prize in physics in 1971. The discovery was an unexpected result (or serendipity as Dennis would say) of research into improving electron microscopes at the British Thomson-Houston Company in Rugby, England. The British Thomson-Houston company filed a patent on 1947-12-17 (and received patent GB685286), but the field did not really advance until the discovery of the laser in 1960.

The first holograms which recorded 3D objects were made by Emmett Leith and Juris Upatnieks in Michigan, USA in 1963 and by Yuri Denisyuk in the Soviet Union.

There are several types of holograms which can be made. The very first holograms were "transmission holograms", which were viewed by shining laser light through them. A later refinement, the "rainbow transmission" hologram allowed viewing by white light and is commonly seen today on credit cards as a security feature and on product packaging. These versions of the rainbow transmission holograms are formed as surface relief patterns in a plastic film, and they incorporate a reflective aluminum coating which provides the light from "behind" to reconstruct their imagery. Another kind of common hologram (a Denisyuk hologram) is the true "white-light reflection hologram" which is made in such a way that the image is reconstructed naturally using light on the same side of the hologram as the viewer.

2006-12-12 02:34:35 · answer #4 · answered by hellboy 2 · 0 2

A three-dimensional image of an object that is a photographic record of light interference patterns is called hologram. Holograms are created by projecting half of a laser light beam directly onto an object as well as onto a photographic plate, which also receives the other half of the beam directly. The interference pattern created on the plate replicates the image or object in three dimensions.It is used to deter counterfeiting of currency, credit cards, and identification.

2006-12-12 03:03:53 · answer #5 · answered by ketan_k1993 2 · 0 0

There is a fantastic way of holograms for advertising in 3D.With a straightforward style, little format; this model generates a powerful visual impact on the viewer or shopper these day. This model could be a terribly appropriate showcase for firms that need an outsized range of exposure points. The holographic vision provides ample perspective of the merchandise. Possibility of mixing physical merchandise with holographic images,the content may be replaced with a USB hard drive. This model may be tailored as per the requirements of the corporate. Additionally, Olomagic represents any kind of image for the holographic visual image.

2014-03-30 16:09:19 · answer #6 · answered by Anonymous · 0 0

Hologram is virtual 3dimension image making in space.

2006-12-12 03:05:18 · answer #7 · answered by VENKATESH 1 · 0 1

u know how our photo captures hologram is something related to it.how it produce i will tell u later but give one similarity in photograph and hologram.in hologram we have somekind of picture n interesting thing is that in hologram from a small part of hologram we can recapture that whole phto means hologram but in photograph we cant do this thats it

2006-12-12 02:42:42 · answer #8 · answered by dharmendrapatel 1 · 0 1

A hologram is a technology whereby light is virtually suspended in the three dimensions (not counting time).

Light sources passing through the same point can increase the traffic of light within that point, thereby giving the impression of a more solid-looking image (the traffic of light increases the visibility of the point -giving the illusion of matter).

2006-12-11 22:38:33 · answer #9 · answered by shadow_cup 2 · 1 1

Hologram is a sticker, it contains company logos or any thing like that. It is mainly used for identification purposes

2006-12-11 22:35:00 · answer #10 · answered by sridharan s 1 · 0 1

hologram it is 3diminsonal sticker made ky technic hologrophy where 2 diminisonal lasers are bent to 3 diminsonal by using interferance and diffraction

2006-12-14 02:13:16 · answer #11 · answered by vijaya u 1 · 0 1

fedest.com, questions and answers