English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-12-11 18:41:27 · 3 answers · asked by yomama 1 in Science & Mathematics Mathematics

3 answers

user this:the antiderivative 1/(a^2+y^2)=(1/a)arctan(y/a)
1/(1+4x^2)=(1/4)/(1/4+x^2) ;then a=1/2 ,y=x
the antiderivative 1/(1+4x^2)=[(1/4)/(1/2)]arctan(2x)=(1/2)arctan(2x)

2006-12-11 21:13:59 · answer #1 · answered by grassu a 3 · 0 0

Consider this,
y= arctan x
x = tan y
dx/dy = sec^2 y = 1 + tan^2 y = 1+x^2
then,
dy/dx = 1/(1+x^2)

Now work the antiderivative of the required function

2006-12-11 19:01:33 · answer #2 · answered by yasiru89 6 · 0 0

1/(1+4x^2)=(1+4x^2)^-1

antiderivative=1/2arctg(2x)+C

2006-12-11 18:52:34 · answer #3 · answered by Zidane 3 · 0 0

fedest.com, questions and answers