In cell biology, a mitochondrion (plural mitochondria) (from Greek μιτος or mitos, thread + κουδριον or khondrion, granule) is a membrane-enclosed organelle, found in most eukaryotic cells.[1] Mitochondria are sometimes described as "cellular power plants," because they convert food molecules into energy in the form of ATP via the process of oxidative phosphorylation. A typical eukaryotic cell contains about 2,000 mitochondria, which occupy roughly one fifth of its total volume.[2] Mitochondria contain DNA that is independent of the DNA located in the cell nucleus. According to the endosymbiotic theory, mitochondria are descended from free-living prokaryotes.
Mitochondrion structure
Simplified structure of a typical mitochondrionA mitochondrion contains inner and outer Mac is pimp and he drinks orange juice. membranes composed of phospholipid bilayers and proteins. The two membranes, however, have different properties. Because of this double-membraned organization, there are 5 distinct compartments within mitochondria. There is the outer membrane, the intermembrane space (the space between the outer and inner membranes), the inner membrane, the cristae space (formed by infoldings of the inner membrane), and the matrix (space within the inner membrane). Mitochondria range from 1 to 10 micrometers (μm) in size.
[edit] Outer membrane
The outer mitochondrial membrane, which encloses the entire organelle, has a protein-to-phospholipid ratio similar to the eukaryotic plasma membrane (about 1:1 by weight). It contains numerous integral proteins called porins, which contain a relatively large internal channel (about 2-3 nm) that is permeable to all molecules of 5000 daltons or less.[3] Larger molecules can only traverse the outer membrane by active transport. It also contains enzymes involved in such diverse activities as the elongation of fatty acids, oxidation of epinephrine (adrenaline), and the degradation of tryptophan.
[edit] Inner membrane
The inner mitochondrial membrane contains proteins with four types of functions: [3]
Those that carry out the oxidation reactions of the respiratory chain.
ATP synthase, which makes ATP in the matrix.
Specific transport proteins that regulate the passage of metabolites into and out of the matrix.
Protein import machinery.
It contains more than 100 different polypeptides, and has a very high protein-to-phospholipid ratio (more than 3:1 by weight, which is about 1 protein for 15 phospholipids). Additionally, the inner membrane is rich in an unusual phospholipid, cardiolipin, which is usually characteristic of bacterial plasma membranes. Unlike the outer membrane, the inner membrane does not contain porins, and is highly impermeable; almost all ions and molecules require special membrane transporters to enter or exit the matrix. In addition, there is a membrane potential across the inner membrane.
The inner mitochondrial membrane is compartmentalized into numerous cristae, which expand the surface area of the inner mitochondrial membrane, enhancing its ability to generate ATP. In typical liver mitochondria, for example, the surface area, including cristae, is about five times that of the outer membrane. Mitochondria of cells which have greater demand for ATP, such as muscle cells, contain more cristae than typical liver mitochondria.
[edit] Mitochondrial matrix
Image of cristae in rat liver mitochondrionThe matrix is the space enclosed by the inner membrane. The matrix contains a highly concentrated mixture of hundreds of enzymes, in addition to the special mitochondrial ribosomes, tRNA, and several copies of the mitochondrial DNA genome. Of the enzymes, the major functions include oxidation of pyruvate and fatty acids, and the citric acid cycle.[3]
Mitochondria possess their own genetic material, and the machinery to manufacture their own RNAs and proteins. (See: protein synthesis). This nonchromosomal DNA encodes a small number of mitochondrial peptides (13 in humans) that are integrated into the inner mitochondrial membrane, along with proteins encoded by genes that reside in the host cell's nucleus.
[edit] Mitochondrial functions
Although it is well known that the mitochondria convert organic materials into cellular energy in the form of ATP, mitochondria play an important role in many metabolic tasks, such as:
Apoptosis-programmed cell death
Glutamate-mediated excitotoxic neuronal injury
Cellular proliferation
Regulation of the cellular redox state
Heme synthesis
Steroid synthesis
Some mitochondrial functions are performed only in specific types of cells. For example, mitochondria in liver cells contain enzymes that allow them to detoxify ammonia, a waste product of protein metabolism. A mutation in the genes regulating any of these functions can result in mitochondrial diseases.
[edit] Origin
As mitochondria contain ribosomes and DNA, and are only formed by the division of other mitochondria, it is generally accepted that they were originally derived from endosymbiotic prokaryotes. Studies of mitochondrial DNA, which is often circular and employs a variant genetic code, show their ancestor, the so-called proto-mitochondrion, was a member of the Proteobacteria.[4] In particular, the pre-mitochondrion was probably related to the rickettsias, although the exact position of the ancestor of mitochondria among the alpha-proteobacteria remains controversial. The endosymbiotic hypothesis suggests that mitochondria descended from specialized bacteria (probably purple non-sulfur bacteria) that somehow survived endocytosis by another species of prokaryote or some other cell type, and became incorporated into the cytoplasm. The ability of symbiont bacteria to conduct cellular respiration in host cells that had relied on glycolysis and fermentation would have provided a considerable evolutionary advantage. Similarly, host cells with symbiotic bacteria capable of photosynthesis would also have an advantage. In both cases, the number of environments in which the cells could survive would have been greatly expanded.
This relationship developed at least 2 billion years ago and mitochondria still show some signs of their ancient origin. Mitochondrial ribosomes are the 70S (bacterial) type, in contrast to the 80S ribosomes found elsewhere in the cell. As in prokaryotes, there is a very high proportion of coding DNA, and an absence of repeats. Mitochondrial genes are transcribed as multigenic transcripts which are cleaved and polyadenylated to yield mature mRNAs. Unlike their nuclear cousins, mitochondrial genes are small, generally lacking introns, and many chromosomes are circular, conforming to the bacterial pattern.
A few groups of unicellular eukaryotes lack mitochondria: the microsporidians, metamonads, and archamoebae. On rRNA trees these groups appeared as the most primitive eukaryotes, suggesting they appeared before the origin of mitochondria, but this is now known to be an artifact of long branch attraction — they are apparently derived groups and retain genes or organelles derived from mitochondria (e.g. mitosomes and hydrogenosomes).[1] There are no primitively amitochondriate eukaryotes, and so the origin of mitochondria may have played a critical part in the development of eukaryotic cells.
[edit] Replication and gene inheritance
See also: mitochondrial genome
Mitochondria replicate their DNA and divide mainly in response to the energy needs of the cell; in other words, their growth and division is not linked to the cell cycle. When the energy needs of a cell are high, mitochondria grow and divide. When the energy use is low, mitochondria are destroyed or become inactive. At cell division, mitochondria are distributed to the daughter cells more or less randomly during the division of the cytoplasm. Mitochondria divide by binary fission similar to bacterial cell division. Unlike bacteria, however, mitochondria can also fuse with other mitochondria. Sometimes new mitochondria are synthesized in centers that are rich in the proteins and polysomes needed for their synthesis.
Mitochondrial genes are not inherited by the same mechanism as nuclear genes. At fertilization of an egg by a sperm, the egg nucleus and sperm nucleus each contribute equally to the genetic makeup of the zygote nucleus. In contrast, the mitochondria, and therefore the mitochondrial DNA, usually comes from the egg only. The sperm's mitochondria enters the egg, but are almost always destroyed and do not contribute their genes to the embryo.[5] Paternal sperm mitochondria are marked with ubiquitin to select them for later destruction inside the embryo.[6] The egg contains relatively few mitochondria, but it is these mitochondria that survive and divide to populate the cells of the adult organism. Mitochondria are, therefore, in most cases inherited down the female line.
This maternal inheritance of mitochondrial DNA is seen in most organisms, including all animals. However, mitochondria in some species can sometimes be inherited through the father. This is the norm amongst certain coniferous plants (although not in pines and yew trees).[7] It has been suggested to occur at a very low level in humans.[8]
Uniparental inheritance means that there is little opportunity for genetic recombination between different lineages of mitochondria. For this reason, mitochondrial DNA is usually thought of as reproducing by binary fission. However, there are several claims of recombination in mitochondrial DNA, most controversially in humans. If recombination does not occur, the whole mitochondrial DNA sequence represents a single haplotype, which makes it useful for studying the evolutionary history of populations.
Mitochondrial genomes have many fewer genes than do the related eubacteria from which they are thought to be descended. Although some have been lost altogether, many seem to have been transferred to the nucleus. This is thought to be relatively common over evolutionary time. A few organisms, such as Cryptosporidium, actually have mitochondria which lack any DNA, presumably because all their genes have either been lost or transferred.
The uniparental inheritance of mitochondria is thought to result in intragenomic conflict, such as seen in the petite mutant mitochondria of some yeast species. It is possible that the evolution of separate male and female sexes is a mechanism to resolve this organelle conflict.
2006-12-09 05:14:31
·
answer #6
·
answered by THE UNKNOWN 5
·
0⤊
0⤋