English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-12-09 00:10:37 · 3 answers · asked by happykid 2 in Science & Mathematics Mathematics

3 answers

let x^sinx be y
taking log
ln y=sinx ln x
1/y *dy/dx=sinx/x+cosxlnx
dy/dx=y[(sinx/x+lnxcosx]
=x^sinx[(sinx/x+lnxcosx]

2006-12-09 00:19:20 · answer #1 · answered by raj 7 · 0 0

Solution:-
Let y=x^sinx--------------------- (1)
Taking log on both the sides,
log y=log x^sinx
Therefore, log y=sinx.logx
Differentiating w.r.t.x,
1/y. dy/dx=sinx.1/x+logx.cosx (Using product rule)
dy/dx=y(sinx/x+logx.cosx)
dy/dx=x^sinx(sinx/x+logx.cosx)----- {from statement no1}

2006-12-09 09:04:45 · answer #2 · answered by lucky21 2 · 0 0

Let y=x^sinx
=>log y = xlog(sin(x))
=>(1/y)dy/dx=x(1/sin(x))*cosx + log(sin(x))...by chain rule!
=>dy/dx=[xcot(x) + log(sin(x))]x^sin(x)

2006-12-09 08:35:25 · answer #3 · answered by sushant 3 · 0 0

fedest.com, questions and answers