English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-12-08 04:31:08 · 8 answers · asked by pistonealexis 1 in Science & Mathematics Mathematics

8 answers

Euclid was a Greek mathematician best known for his treatise on geometry: The Elements . This influenced the development of Western mathematics for more than 2000 years.

2006-12-08 04:34:05 · answer #1 · answered by Cameron L 3 · 0 0

Euclid wrote the oldest math textbook that we know about, called The Elements. The book was compiled over many years and had contributions from many mathematicians, but Euclid wrote it up around 300 BCE. It was so influential, that Euclid was virtually synonymous with mathematics until the 1800s.

2006-12-08 12:35:54 · answer #2 · answered by acafrao341 5 · 0 0

He is most famous for writing Euclid's Elements over 2000 years ago. His logic presented in his treatises are beautiful and as Mr. Spock would say: "This is very logical."

Euclid base Geometry on only five postulates. Everything else he was able to prove. Today's Geometry books have many more postulates such as the SSS, ASA, AAS and SAS congruency theorems for triangle congruency. He proved these. Today's students are told to accept them as true without proof. What a shame as the dumbing down of America continues.

2006-12-08 12:41:32 · answer #3 · answered by ironduke8159 7 · 0 0

Here's an excerpt of Euclid biography that tells his sotry in a much more interesting manner than I have ever seen it told.

2006-12-08 12:49:54 · answer #4 · answered by jackbutler5555 5 · 0 0

He is most famous for the axiomatic approach to geometry (in his most famous book: the Elements), which is the first example of the axiomatic description of a mathematical (and more generally, any scientific) principle.

He also studied numbers and proved the infinitude of the prime numbers by using reductio ad absurdum (proof by contradiction), hence he layed down the foundations of number theory, as well.

He is also famous for his work in mathematical logic, because he used the principle of deduction (which modern mathematics is based on) and he gave early examples of modern proof techniques (like the proof by contradiction mentioned above).

2006-12-08 13:00:38 · answer #5 · answered by ted 3 · 0 0

GEOMETRY. Euclid was the man.

2006-12-08 12:32:48 · answer #6 · answered by Grand Master Flex 3 · 0 0

Euclidian Geonetry. He is the god of our modern math system.

2006-12-08 12:35:14 · answer #7 · answered by adam11173 2 · 0 0

I Bulmer-Thomas, J E Murdoch, Biography in Dictionary of Scientific Biography (New York 1970-1990).
Biography in Encyclopaedia Britannica. [Available on the Web]
Books:

J L Berggren and R S D Thomas, Euclid's 'Phaenomena' : A translation and study of a Hellenistic treatise in spherical astronomy (Princeton, NJ, 1996).
H L L Busard, The Latin translation of the Arabic version of Euclid's 'Elements' commonly ascribed to Gerard of Cremona (Leiden, 1984).
H L L Busard (ed.), The Mediaeval Latin translation of Euclid's 'Elements' : Made directly from the Greek (Wiesbaden, 1987).
C B Glavas, The place of Euclid in ancient and modern mathematics (Athens, 1994).
D H Fowler, The mathematics of Plato's academy : a new reconstruction (Oxford, 1987).
P M Fraser, Ptolemaic Alexandria (3 vols.) (Oxford, 1972).
T L Heath, A history of Greek mathematics 1 (Oxford, 1931).
T L Heath, The Thirteen Books of Euclid's Elements (3 Volumes) (New York, 1956).
J Itard, Les livres arithmétique d'Euclide (Paris, 1962).
S Ito, The medieval Latin translation of the 'Data' of Euclid (Boston, Mass., 1980).
C V Jones, The influence of Aristotle in the foundation of Euclid's 'Elements' (Spanish), Mathesis. Mathesis 3 (4) (1987), 375-387 (1988).
G R Morrow (ed.), A commentary on the first book of Euclid's 'Elements' (Princeton, NJ, 1992).
I Mueller, Philosophy of mathematics and deductive structure in Euclid's 'Elements' (Cambridge, Mass.-London, 1981).
P Schreiber, Euklid : Biographien Hervorragender Naturwissenschaftler, Techniker und Mediziner (Leipzig, 1987).
H Wussing, Euclid, in H Wussing and W Arnold, Biographien bedeutender Mathematiker (Berlin, 1983).
Articles:

R C Archibald, The first translation of Euclid's elements into English and its source, Amer. Math. Monthly 57 (1950), 443-452.
G Arrighi, Some indirect Latin versions of Euclid's 'Elements' (Italian), Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 11 (1) (1987), 155-159.
G Arrighi, Notes on Euclid's 'Elements' (Italian), in Proceedings of the Study Meeting in Memory of Giuseppe Gemignani (Modena, 1995), 87-91.
B Artmann, Euclid's 'Elements' and its prehistory, in On mathematics (Edmonton, AB, 1992), 1-47.
G Aujac, Le rapport 'di isou' (Euclide V, définition 17) : Définition, utilisation, transmission, Historia Math. 13 (4) (1986), 370-386.
N G Bashmakova, The arithmetical books of Euclid's 'Elements' (Russian), Trudy Sem. MGU Istor. Mat. Istor.-Mat. Issledov. (1) (1948), 296-328.
J L Berggren and R S D Thomas, Mathematical astronomy in the fourth century B.C. as found in Euclid's 'Phaenomena', Physis Riv. Internaz. Storia Sci. (N.S.) 29 (1) (1992), 7-33.
A C Bowen, Euclid's 'Sectio canonis' and the history of Pythagoreanism, in Science and philosophy in classical Greece (New York, 1991), 167-187.
C D Brownson, Euclid's 'Optics' and its compatibility with linear perspective, Arch. Hist. Exact Sci. 24 (3) (1981), 165-194.
M K Bucel', Rational numbers and quadratic irrationalities in Euclid's 'Elements' (Russian), in History and methodology of the natural sciences XIV : Mathematics, mechanics (Moscow, 1973), 60-64.
H E Burton, The optics of Euclid, J. Opt. Soc. Amer. 35 (1945), 357-372.
H L L Busard, The translation of the 'Elements' of Euclid from the Arabic into Latin by Hermann of Carinthia (?), Janus 54 (1967), 1-140.
J Cassinet, La relation d'ordre entre rapports dans les 'éléments' d'Euclide : développements au XVIIe siècle, in Histoire de fractions, fractions d'histoire (Basel, 1992), 341-350.
G de Young, The Arabic textual traditions of Euclid's 'Elements', Historia Math. 11 (2) (1984), 147-160.
V M Eremina, Aristotle on transitional unprovable propositions and five general concepts of Euclid (Russian), Istor.-Mat. Issled. 32-33 (1990), 290-300.
M Federspiel, Sur la définition euclidienne de la droite, in Mathématiques et philosophie de l'antiquité à l'âge classique (Paris, 1991), 115-130.
E Filloy, Geometry and the axiomatic method. IV : Euclid (Spanish), Mat. Ense nanza 9 (1977), 14-21.
R Fischler, A remark on Euclid II, 11, Historia Math. 6 (4) (1979), 418-422.
M Folkerts, Adelard's versions of Euclid's 'Elements', in Adelard of Bath (London, 1987), 55-68.
D H Fowler, An invitation to read Book X of Euclid's 'Elements', Historia Math. 19 (3) (1992), 233-264.
D H Fowler, Book II of Euclid's 'Elements' and a pre-Eudoxan theory of ratio. II, Sides and diameters, Arch. Hist. Exact Sci. 26 (3) (1982), 193-209.
D H Fowler, Book II of Euclid's 'Elements' and a pre-Eudoxan theory of ratio, Arch. Hist. Exact Sci. 22 (1-2) (1980), 5-36.
D H Fowler, Investigating Euclid's Elements, British J. Philos. Sci. 34 (1983), 57-70.
J-L Gardies, L'organisation du livre XII des 'éléments' d'Euclide et ses anomalies, Rev. Histoire Sci. 47 (2) (1994), 189-208.
J-L Gardies, La proposition 14 du livre V dans l'économie des 'éléments' d'Euclide, Rev. Histoire Sci. 44 (3-4) (1991), 457-467.
I Grattan-Guinness, Numbers, magnitudes, ratios, and proportions in Euclid's 'Elements' : how did he handle them?, Historia Math. 23 (4) (1996), 355-375.
A W Grootendorst, Geometrical algebra in Euclid (Dutch), in Summer course 1991 : geometrical structures (Amsterdam, 1991), 1-26.
H Guggenheimer, The axioms of betweenness in Euclid, Dialectica 31 (1-2) (1977), 187-192.
M D Hendy, Euclid and the fundamental theorem of arithmetic, Historia Math. 2 (1975), 189-191.
R Herz-Fischler, What are propositions 84 and 85 of Euclid's 'Data' all about?, Historia Math. 11 (1) (1984), 86-91.
J Hjelmslev, Über Archimedes' Grössenlehre, Danske Vid. Selsk. Mat.-Fys. Medd. 25 (15) (1950).
J P Hogendijk, The Arabic version of Euclid's 'On divisions', in Vestigia mathematica (Amsterdam, 1993), 143-162.
J P Hogendijk, Observations on the icosahedron in Euclid's 'Elements', Historia Math. 14 (2) (1987), 175-177.
J P Hogendijk, On Euclid's lost 'Porisms' and its Arabic traces, Boll. Storia Sci. Mat. 7 (1) (1987), 93-115.
W R Knorr, When circles don't look like circles : an optical theorem in Euclid and Pappus, Arch. Hist. Exact Sci. 44 (4) (1992), 287-329.
W R Knorr, On the principle of linear perspective in Euclid's 'Optics', Centaurus 34 (3) (1991), 193-210.
W R Knorr, Euclid's tenth book : an analytic survey, Historia Sci. 29 (1985), 17-35.
W Knorr, Problems in the interpretation of Greek number theory : Euclid and the 'fundamental theorem of arithmetic', Studies in Hist. and Philos. Sci. 7 (4) (1976), 353-368.
W R Knorr, What Euclid meant : on the use of evidence in studying ancient mathematics, in Science and philosophy in classical Greece (New York, 1991), 119-163.
K Kreith, Euclid turns to probability, Internat. J. Math. Ed. Sci. Tech. 20 (3) (1989), 345-351.
P Kunitzsch, 'The peacock's tail' : on the names of some theorems of Euclid's 'Elements', in Vestigia mathematica (Amsterdam, 1993), 205-214.
T Lévy, Les 'éléments' d'Euclide : le texte et son histoire, in Mathématiques- philosophie et enseignement (Yamoussoukro, 1995), 10-13.
Y Z Liang and C F Yao, Tracing the origins of Euclid's 'Elements of geometry' (Chinese), Natur. Sci. J. Harbin Normal Univ. 3 (1) (1987), 94-100.
D E Loomis, Euclid : rhetoric in mathematics, Philos. Math. (2) 5 (1-2) (1990), 56-72.
R Lorch, Some remarks on the Arabic-Latin Euclid, in Adelard of Bath (London, 1987), 45-54.
A I Markusevic, On the classification of irrationalities in Book X of Euclid's 'Elements' (Russian), Trudy Sem. MGU Istor. Mat. Istor.-Mat. Issledov. (1) (1948), 329-342.
F A Medvedev, Corniform angles in Euclid's 'Elements' and Proclus's 'Commentaries' (Russian), Istor.-Mat. Issled. 32-33 (1990), 20-34.
V N Molodsii, Was Euclid a follower of Plato? (Russian), Trudy Sem. MGU Istor. Mat. Istor.-Mat. Issledov. (2) (1949), 499-504.
I Mueller, Euclid's 'Elements' and the axiomatic method, British J. Philos. Sci. 20 (1969), 289-309.
I Mueller, Sur les principes des mathématiques chez Aristote et Euclide, in Mathématiques et philosophie de l'antiquité à l'âge classique (Paris, 1991), 101-113.
I Mueller, On the notion of a mathematical starting point in Plato, Aristotle, and Euclid, in Science and philosophy in classical Greece (New York, 1991), 59-97.
T Murata, Quelques remarques sur le Livre X des 'Eléments' d'Euclide, Historia Sci. (2) 2 (1) (1992), 51-60.
T Murata, A tentative reconstruction of the formation process of Book XIII of Euclid's 'Elements', Comment. Math. Univ. St. Paul. 38 (1) (1989), 101-127.
V A Ogannisjan, Euclid (Russian), Armjan. Gos. Ped. Inst. Sb. Naucn. Trud. Ser. Fiz.-Mat. Vyp. 3 (1966), 69-80.
S R Palmquist, Kant on Euclid : geometry in perspective, Philos. Math. (2) 5 (1-2) (1990), 88-113.
A E Raik, The tenth book of Euclid's 'Elements' (Russian), Trudy Sem. MGU Istor. Mat. Istor.-Mat. Issledov. (1) (1948), 343-384.
K Saito, Debate : Proposition 14 of Book V of the 'Elements'---a proposition that remained a local lemma. Comment on : 'Proposition 14 of Book V in the organization of Euclid's 'Elements'', Rev. Histoire Sci. 47 (2) (1994), 273-284.
K Saito, Duplicate ratio in Book VI of Euclid's 'Elements', Historia Sci. (2) 3 (2) (1993), 115-135.
K Saito, Compounded ratio in Euclid and Apollonius, Historia Sci. 31 (1986), 25-59.
K Saito, Book II of Euclid's 'Elements' in the light of the theory of conic sections, Historia Sci. 28 (1985), 31-60.
P Schreiber,Euklid und die 'Elemente' aus heutiger Sicht, Mitt. Math. Ges. DDR 1 (1984), 71-82.
A Seidenberg, Did Euclid's 'Elements, Book I,' develop geometry axiomatically?, Arch. History Exact Sci. 14 (4) (1975), 263-295.
G Simon, Aux origines de la théorie des miroirs : sur l'authenticité de la 'Catoptrique' d'Euclide, Rev. Histoire Sci. 47 (2) (1994), 259-272.
E I Slavutin, Euclid's 'Data' (Russian), Istor.-Mat. Issled. Vyp. 22 (1977), 229-236, 303.
A Szab, The origins of Euclid's terminology. I (Hungarian), Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 10 (1960), 441-468.
A Szabo, Ein Satz über die mittlere Proportionale bei Euklid (Elem. III 36), Comment. Math. Univ. St. Paul. 39 (1) (1990), 41-51.
A Szabo, Euclid's terms in the foundations of mathematics. II (Hungarian), Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 11 (1961), 1-46.
C M Taisbak, Zeuthen and Euclid's 'Data' 86 algebra - or A lemma about intersecting hyperbolas?, Centaurus 38 (2-3) (1996), 122-139.
C M Taisbak, Elements of Euclid's 'Data', in On mathematics (Edmonton, AB, 1992), 135-171.
W Theisen, Euclid, relativity, and sailing, Historia Math. 11 (1) (1984), 81-85.
W Theisen, A note on John of Beaumont's version of Euclid's 'De visu', British J. Hist. Sci. 11 (38, 2) (1978), 151-155.
R Tobin, Ancient perspective and Euclid's 'Optics', J. Warburg Courtauld Inst. 53 (1990), 14-41.
G Toussaint, A new glance at Euclid's second proposition (Spanish), Mathesis 9 (3) (1993), 265-294.
G Toussaint, A new look at Euclid's second proposition, Math. Intelligencer 15 (3) (1993), 12-23.
B Vahabzadeh, Two commentaries on Euclid's definition of proportional magnitudes, Arabic Sci. Philos. 4 (1) (1994), 181-198.
G Valabrega Elda, A hypothesis on the origin of Euclid's geometric algebra (Italian), Boll. Un. Mat. Ital. A (5) 16 (1) (1979), 190-200.
B Vitrac, La Définition V.8 des 'éléments' d'Euclide, Centaurus 38 (2-3) (1996), 97-121.
R J Wagner, Euclid's intended interpretation of superposition, Historia Math. 10 (1) (1983), 63-70.
A Weil, Who betrayed Euclid? : Extract from a letter to the editor, Arch. History Exact Sci. 19 (2) (1978/79), 91-93.
M Ya Vygodskii, Euclid's 'Elements' (Russian), Trudy Sem. MGU Istor. Mat. Istor.-Mat. Issledov. (1) (1948), 217-295.

JOC/EFR January 1999
The URL of this page is:
http://www-history.mcs.st-andrews.ac.uk/References/Euclid.html

2006-12-08 12:33:57 · answer #8 · answered by squee 2 · 0 0

fedest.com, questions and answers