English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-12-08 01:12:21 · 4 answers · asked by Anonymous in Science & Mathematics Mathematics

4 answers

- e(7/x)/7 + c

Integrate by parts

2006-12-08 01:15:47 · answer #1 · answered by Status: Paranoia 4 · 0 0

e^(7/x)/x^2
put 1/x=k
-dx/x^2=dk
dx=-x^2dk
so
e^(7k) *-x^2dk/x^2
so we get
-e^7k dk
so by integrating we get
-e^(7k) / 7
substitute k=1/x
so final answer is -e^(7/x) / 7

2006-12-08 09:20:35 · answer #2 · answered by riya s 2 · 0 0

int. [e^(7/x)] / x^2 dx
use u= 1/x
then du/dx = -1/x^2
the integral becomes,
int. -e^(7u) du = -[e^7u]/7 + c

2006-12-08 09:31:14 · answer #3 · answered by yasiru89 6 · 0 0

∫[e^(7/x)] / x² dx =

u = 1/x
du = -1/x² dx

=>
∫[e^(7/x)] / x² dx = -∫[e^(7u)] du =

t = 7u
dt = 7 du
dt/7 = du

=>
∫[e^(7/x)] / x² dx = -∫[e^(7u)] du = -1/7∫e^t dt = -1/7e^t + c
∫[e^(7/x)] / x² dx = -∫[e^(7u)] du = -1/7e^(7u) + c

∫[e^(7/x)] / x² dx = -(1/7)e^(7/x) + c

2006-12-08 09:17:18 · answer #4 · answered by Luiz S 7 · 0 0

fedest.com, questions and answers