English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

integral of 48sinxcosx dx from 0 to pi/6

thanks for the help :)

2006-12-07 18:39:25 · 2 answers · asked by thesekeys 3 in Science & Mathematics Mathematics

2 answers

Use the identity 2 sin x cos x = sin 2x.

∫ (48 sin x cos x) dx = ∫ (24 sin 2x) dx = -12 cos 2x.

Evaluating from 0 to pi/6, we get

-12 cos (pi/3) + 12 cos (0) = -12 * (1/2) + 12 * (1) = 6.

2006-12-07 18:43:43 · answer #1 · answered by Anonymous · 1 0

factor out a 24 so you get
24 * integral(2sinxcosx dx)
using trig identities, you get
24 * integral(sin2x dx)
substitute, u=2x du=2
24 * integral(sinu (1/2)du) now from 0 to pi/3
12 * integral(sinu du)
12 *( -cos(pi/3) + cos(0))
12 * 0.5

6

2006-12-08 02:45:00 · answer #2 · answered by Wocka wocka 6 · 0 0

fedest.com, questions and answers