English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Simplify : cot^(2)x / cscx - 1

Prove the identity: cos^(4)x - sin^(4)x = cos(2)x-sin^(2)x



Please Help i really need the answers and steps. I am a little confused. Thanks

2006-11-27 10:13:00 · 2 answers · asked by Anonymous in Science & Mathematics Mathematics

2 answers

#1

cot²x
----------- =
cscx - 1

csx²x - 1
------------ =
cscx - 1

(cscx + 1)(cscx - 1)
-------------------------- =
cscx - 1

cscx + 1

-------------------------- -------------------------- --------------------------

#2

cos^(4)x - sin^(4)x = cos^(2)x - sin^(2)x

LHS = cos^(4)x - sin^(4)x

= (cos²x - sin²x)(cos²x + sin²x)

= (cos²x - sin²x)( 1 )

= cos²x - sin²x

= RHS ....... QED

2006-11-27 10:21:12 · answer #1 · answered by Wal C 6 · 0 0

cos^(4)x - sin^(4)x = cos^(2)x-sin^(2)x

cos^4 (x) - sin^4 (x) = [cos^2(x) - sin^2(x)](cos^2(x) + cos^2 (x)]
= cos^2(x) - sin^2(x)

2006-11-27 18:28:58 · answer #2 · answered by James Chan 4 · 0 0

fedest.com, questions and answers