English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

The integral of p^5 ln p dp.

2006-11-18 14:09:11 · 2 answers · asked by Anonymous in Science & Mathematics Mathematics

2 answers

u can integrate by parts with u= ln p and dv = p^5 or v= p^6/6


u = ln p and v = p^6/6 dv = p^5

int udv = uv - int v du = p^6 ln p/6 - int (p^6/6/p)
= p^6 ln p/ 6 - int p^5/6 = (p^6 lnp)/6 - p^6 + c

2006-11-18 14:15:16 · answer #1 · answered by Mein Hoon Na 7 · 0 0

∫p^5 ln p dp
∫udv = uv - ∫vdu
Let u = ln(p), dv = p^5 dp, du = dx/x
v = (1/6)p^6
∫udv = uv - ∫vdu = (1/6)p^6ln(p) - ∫(1/6)p^5dx
∫udv = uv - ∫vdu = (1/6)p^6ln(p) - (1/36)p^6 + C
∫p^5 ln p dp = (1/36)p^6(6ln(p) - 1)

2006-11-18 14:32:10 · answer #2 · answered by Helmut 7 · 0 0

fedest.com, questions and answers