English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

radical 2nd n+radical 3th n +...+radical n th All division to n

2006-11-17 07:28:54 · 4 answers · asked by Anonymous in Science & Mathematics Mathematics

4 answers

i am Totally sure that your question is not about a formula that can give the sum for the giving n,coz that formula just doesn't exist!

but if u mean : what happens when n --> ∞ then:

lim ( n^(1/2) + n^(1/3) + .... + n^(1n) ) / n
n -> ∞

= lim (n^(1/2)) / n
n -> ∞

= lim 1 / n^(1/2) = 0
n -> ∞

it means that,as much as u take n bigger,the sum gets much more near to 0.

hope it helps!

2006-11-17 07:58:34 · answer #1 · answered by farbod f 2 · 0 1

Not totally clear on the end of your statement.

Your looking at a sum:
S=n^(1/2)+n^(1/3)+ n^(1/4) +...., right?

Try factoring out an n:
S = n[n^(-1/2)+n^(-2/3)+n^(-3/4)+...] not much help

I'm not sure about the following either!

exploit the properies of exponents:
exp(S) = exp(n^(1/2))*exp(n^(1/3))*...
= exp(n)^(1/2)*exp(n)^(1/3)*...
=exp(n){exp(n)^(-1/2)

2006-11-17 07:41:45 · answer #2 · answered by modulo_function 7 · 0 0

difficulty fixing is two words, no longer a hyphenated word. Too a lot of human beings attempt to hyphenate $#it that doesn't want hyphens. particular, that is human relatives. in spite of this, it is likewise English communications and computing device operations.

2016-12-30 14:18:39 · answer #3 · answered by crunkleton 3 · 0 0

? i dont think many people can help you

2006-11-17 07:35:15 · answer #4 · answered by big.fishes2 2 · 0 1

fedest.com, questions and answers