English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-11-16 21:46:26 · 14 answers · asked by chosen one nick 1 in Science & Mathematics Mathematics

14 answers

Pi is the ratio of circumfarence of circle to the diameter. It is irrational and approximated by 22/7

This can be defined as 4(tan ^-1 1)

2006-11-16 21:57:30 · answer #1 · answered by Mein Hoon Na 7 · 1 0

Hi:

To answer your question you need to know what pi is : It is the name of the ratio of a circle's circumference to it's diameter. it a constant number that never changes no matter how big or small the diameter of the circle you make. Start by cut some paper circles of varying diameters say 1 inch , 2 inch and 3 inch take a ruler and mark a spot on the edge of the paper circle and position that spot on the zero mark on the ruler. Then carefully roll the paper circle along the ruler and see where you end up as that point return to the bottom of the circle . This is the circumference now divide that number by the circle diameter, you should get a close value for pi. of about 3.1 or 3.2 . To make a circle that about equal the value of pi to the first 6 places. By using this method would need a circle about 1,000,000 inches or 15.7828... miles in diameter obviously no one is going to make a circle that big. Fortunately mathematics gives us others way to to find the value which you can read about in it history below


Back about three thousand years ago the ancient Egyptians estimated Pi to be about 3 units (you have to remember that their Mathematics were quite primitive and they had no algebra to help them at this time). Later the ancient Greeks developed and used the area of triangles filling a circle method to estimate pi to be between 22/7 and 3 10/71

{pi= sin ( (360/N)/2)*N

pi = tan(360/N)/2)*N { N= the number of triangles try the numbers between 100,000 to 1*10^50) for good results}

This is the modern day formula for the filling the circle method used by the Greek }

around 240 B.C. However this was good enough for building things and such, but is was not good enough for mathematicans however. So a quest was started to find the true value for pi and various mehods were used to get a better and better estimate for the value of pi. In about the 15th and 16 th centry A.D. Various discovery where made about Pi:

1) Pi is irrational { Meaning it does not repeat itself ever ; like 1/3} and it's transcendental { Meaning that powers of and combination of powers of pi will not give finite whole numbers } So all formulae for computing pi will be infinitely long.

2) with the devolpment of Algbera and Calculus, certain series were found to give the approximate value of pi

Pi= sqr ( 6*(1 + 1/(2^2)+ 1/(3^2)+ 1/ (4^2) + 1/(5^2).....) { sqr means Square root}

or

Pi = 4*( 1- (1/3)+(1/5)-(1/7)+(1/9)- (1/11)......)

Those series take a long time to come to the value of Pi that we know Pi to be today. Which bring us to our era, when electronic computers where built, and as soon as they became avialable. Mathematican were able to confirm those series to be the appoximate value of Pi , which are still in use today. it has been calulated the about 15 billion decimal places and is so well known that it is use to gauged the speed and power of all supercomputers and computers that made today and in the future to come. and it being surpassed in the number of decimal places to be counted in. and it pop up in some interesting places.

Here Pi to a few hundred decimal places I got off the Internet:

3.

1415926535 8979323846 2643383279 5028841971 6939937510
5820974944 5923078164 0628620899 8628034825 3421170679
8214808651 3282306647 0938446095 5058223172 5359408128
4811174502 8410270193 8521105559 6446229489 5493038196
4428810975 6659334461 2847564823 3786783165 2712019091
4564856692 3460348610 4543266482 1339360726 0249141273
7245870066 0631558817 4881520920 9628292540 9171536436
7892590360 0113305305 4882046652 1384146951 9415116094
3305727036 5759591953 0921861173 8193261179 3105118548
0744623799 6274956735 1885752724 8912279381 8301194912
9833673362 4406566430 8602139494 6395224737 1907021798
6094370277 0539217176 2931767523 8467481846 7669405132
0005681271 4526356082 7785771342 7577896091 7363717872
1468440901 2249534301 4654958537 1050792279 6892589235
4201995611 2129021960 8640344181 5981362977 4771309960
5187072113 4999999837 2978049951 0597317328 1609631859
5024459455 3469083026 4252230825 3344685035 2619311881
7101000313 7838752886 5875332083 8142061717 7669147303
5982534904 2875546873 1159562863 8823537875 9375195778
1857780532 1712268066 1300192787 6611195909 2164201989

3809525720 1065485863 2788659361 5338182796 8230301952
0353018529 6899577362 2599413891 2497217752 8347913151
5574857242 4541506959 5082953311 6861727855 8890750983
8175463746 4939319255 0604009277 0167113900 9848824012
8583616035 6370766010 4710181942 9555961989 4676783744
9448255379 7747268471 0404753464 6208046684 2590694912
9331367702 8989152104 7521620569 6602405803 8150193511
2533824300 3558764024 7496473263 9141992726 0426992279
6782354781 6360093417 2164121992 4586315030 2861829745
5570674983 8505494588 5869269956 9092721079 7509302955
3211653449 8720275596 0236480665 4991198818 3479775356
6369807426 5425278625 5181841757 4672890977 7727938000
8164706001 6145249192 1732172147 7235014144 1973568548
1613611573 5255213347 5741849468 4385233239 0739414333
4547762416 8625189835 6948556209 9219222184 2725502542
5688767179 0494601653 4668049886 2723279178 6085784383
8279679766 8145410095 3883786360 9506800642 2512520511
7392984896 0841284886 2694560424 1965285022 2106611863
0674427862 2039194945 0471237137 8696095636 4371917287
4677646575 7396241389 0865832645 9958133904 7802759009

9465764078 9512694683 9835259570 9825822620 5224894077
2671947826 8482601476 9909026401 3639443745 5305068203
4962524517 4939965143 1429809190 6592509372 2169646151
5709858387 4105978859 5977297549 8930161753 9284681382
6868386894 2774155991 8559252459 5395943104 9972524680
8459872736 4469584865 3836736222 6260991246 0805124388
4390451244 1365497627 8079771569 1435997700 1296160894
4169486855 5848406353 4220722258 2848864815 8456028506
0168427394 5226746767 8895252138 5225499546 6672782398
6456596116 3548862305 7745649803 5593634568 1743241125
1507606947 9451096596 0940252288 7971089314 5669136867
2287489405 6010150330 8617928680 9208747609 1782493858
9009714909 6759852613 6554978189 3129784821 6829989487
2265880485 7564014270 4775551323 7964145152 3746234364
5428584447 9526586782 1051141354 7357395231 1342716610
2135969536 2314429524 8493718711 0145765403 5902799344
0374200731 0578539062 1983874478 0847848968 3321445713
8687519435 0643021845 3191048481 0053706146 8067491927
8191197939 9520614196 6342875444 0643745123 7181921799
9839101591 9561814675 1426912397 4894090718 6494231961

5679452080 9514655022 5231603881 9301420937 6213785595
6638937787 0830390697 9207734672 2182562599 6615014215
0306803844 7734549202 6054146659 2520149744 2850732518
6660021324 3408819071 0486331734 6496514539 0579626856
1005508106 6587969981 6357473638 4052571459 1028970641
4011097120 6280439039 7595156771 5770042033 7869936007
2305587631 7635942187 3125147120 5329281918 2618612586
7321579198 4148488291 6447060957 5270695722 0917567116
7229109816 9091528017 3506712748 5832228718 3520935396
5725121083 5791513698 8209144421 0067510334 6711031412
6711136990 8658516398 3150197016 5151168517 1437657618
3515565088 4909989859 9823873455 2833163550 7647918535
8932261854 8963213293 3089857064 2046752590 7091548141
6549859461 6371802709 8199430992 4488957571 2828905923
2332609729 9712084433 5732654893 8239119325 9746366730
5836041428 1388303203 8249037589 8524374417 0291327656
1809377344 4030707469 2112019130 2033038019 7621101100
4492932151 6084244485 9637669838 9522868478 3123552658
2131449576 8572624334 4189303968 6426243410 7732269780
2807318915 4411010446 8232527162 0105265227 2111660396

6655730925 4711055785 3763466820 6531098965 2691862056
4769312570 5863566201 8558100729 3606598764 8611791045
3348850346 1136576867 5324944166 8039626579 7877185560
8455296541 2665408530 6143444318 5867697514 5661406800
7002378776 5913440171 2749470420 5622305389 9456131407
1127000407 8547332699 3908145466 4645880797 2708266830
6343285878 5698305235 8089330657 5740679545 7163775254
2021149557 6158140025 0126228594 1302164715 5097925923
0990796547 3761255176 5675135751 7829666454 7791745011
2996148903 0463994713 2962107340 4375189573 5961458901
9389713111 7904297828 5647503203 1986915140 2870808599
0480109412 1472213179 4764777262 2414254854 5403321571
8530614228 8137585043 0633217518 2979866223 7172159160
7716692547 4873898665 4949450114 6540628433 6639379003
9769265672 1463853067 3609657120 9180763832 7166416274
8888007869 2560290228 4721040317 2118608204 1900042296
6171196377 9213375751 1495950156 6049631862 9472654736
4252308177 0367515906 7350235072 8354056704 0386743513
6222247715 8915049530 9844489333 0963408780 7693259939
7805419341 4473774418 4263129860 8099888687 4132604721

5695162396 5864573021 6315981931 9516735381 2974167729
4786724229 2465436680 0980676928 2382806899 6400482435
4037014163 1496589794 0924323789 6907069779 4223625082
2168895738 3798623001 5937764716 5122893578 6015881617
5578297352 3344604281 5126272037 3431465319 7777416031
9906655418 7639792933 4419521541 3418994854 4473456738
3162499341 9131814809 2777710386 3877343177 2075456545
3220777092 1201905166 0962804909 2636019759 8828161332
3166636528 6193266863 3606273567 6303544776 2803504507
7723554710 5859548702 7908143562 4014517180 6246436267
9456127531 8134078330 3362542327 8394497538 2437205835
3114771199 2606381334 6776879695 9703098339 1307710987
0408591337 4641442822 7726346594 7047458784 7787201927
7152807317 6790770715 7213444730 6057007334 9243693113
8350493163 1284042512 1925651798 0694113528 0131470130
4781643788 5185290928 5452011658 3934196562 1349143415
9562586586 5570552690 4965209858 0338507224 2648293972
8584783163 0577775606 8887644624 8246857926 0395352773
4803048029 0058760758 2510474709 1643961362 6760449256
2742042083 2085661190 6254543372 1315359584 5068772460

2901618766 7952406163 4252257719 5429162991 9306455377
9914037340 4328752628 8896399587 9475729174 6426357455
2540790914 5135711136 9410911939 3251910760 2082520261
8798531887 7058429725 9167781314 9699009019 2116971737
2784768472 6860849003 3770242429 1651300500 5168323364
3503895170 2989392233 4517220138 1280696501 1784408745
1960121228 5993716231 3017114448 4640903890 6449544400
6198690754 8516026327 5052983491 8740786680 8818338510
2283345085 0486082503 9302133219 7155184306 3545500766
8282949304 1377655279 3975175461 3953984683 3936383047
4611996653 8581538420 5685338621 8672523340 2830871123
2827892125 0771262946 3229563989 8989358211 6745627010
2183564622 0134967151 8819097303 8119800497 3407239610
3685406643 1939509790 1906996395 5245300545 0580685501
9567302292 1913933918 5680344903 9820595510 0226353536
1920419947 4553859381 0234395544 9597783779 0237421617
2711172364 3435439478 2218185286 2408514006 6604433258
8856986705 4315470696 5747458550 3323233421 0730154594
0516553790 6866273337 9958511562 5784322988 2737231989
8757141595 7811196358 3300594087 3068121602 8764962867

4460477464 9159950549 7374256269 0104903778 1986835938
1465741268 0492564879 8556145372 3478673303 9046883834
3634655379 4986419270 5638729317 4872332083 7601123029
9113679386 2708943879 9362016295 1541337142 4892830722
0126901475 4668476535 7616477379 4675200490 7571555278
1965362132 3926406160 1363581559 0742202020 3187277605
2772190055 6148425551 8792530343 5139844253 2234157623
3610642506 3904975008 6562710953 5919465897 5141310348
2276930624 7435363256 9160781547 8181152843 6679570611
0861533150 4452127473 9245449454 2368288606 1340841486
3776700961 2071512491 4043027253 8607648236 3414334623
5189757664 5216413767 9690314950 1910857598 4423919862
9164219399 4907236234 6468441173 9403265918 4044378051
3338945257 4239950829 6591228508 5558215725 0310712570
1266830240 2929525220 1187267675 6220415420 5161841634
8475651699 9811614101 0029960783 8690929160 3028840026
9104140792 8862150784 2451670908 7000699282 1206604183
7180653556 7252532567 5328612910 4248776182 5829765157
9598470356 2226293486 0034158722 9805349896 5022629174
8788202734 2092222453 3985626476 6914905562 8425039127

5771028402 7998066365 8254889264 8802545661 0172967026
6407655904 2909945681 5065265305 3718294127 0336931378
5178609040 7086671149 6558343434 7693385781 7113864558
7367812301 4587687126 6034891390 9562009939 3610310291
6161528813 8437909904 2317473363 9480457593 1493140529
7634757481 1935670911 0137751721 0080315590 2485309066
9203767192 2033229094 3346768514 2214477379 3937517034
4366199104 0337511173 5471918550 4644902636 5512816228
8244625759 1633303910 7225383742 1821408835 0865739177
1509682887 4782656995 9957449066 1758344137 5223970968
3408005355 9849175417 3818839994 4697486762 6551658276

2006-11-18 00:59:08 · answer #2 · answered by Anonymous · 0 0

Pi is the (circumference/diameter).

The fact that the ratio of the circumference to the diameter of a circle is constant has been known for so long that it is quite untraceable. The earliest values of π including the 'Biblical' value of 3, were almost certainly found by measurement.

The first theoretical calculation seems to have been carried out by Archimedes of Syracuse (287-212 BC). He obtained the approximation

223/71 < π < 22/7.

Before giving an indication of his proof, notice that very considerable sophistication involved in the use of inequalities here. Archimedes knew, what so many people to this day do not, that π does not equal 22/7, and made no claim to have discovered the exact value. If we take his best estimate as the average of his two bounds we obtain 3.1418, an error of about 0.0002.

Here is Archimedes' argument.

Consider a circle of radius 1, in which we inscribe a regular polygon of 3*(2n-1) sides, with semiperimeter b_n, and superscribe a regular polygon of 3*2^(n-1) sides, with semiperimeter a_n.


The diagram for the case n = 2 is on the right.

The effect of this procedure is to define an increasing sequence

b_1 , b_2 , b_3 , ...

and a decreasing sequence

a_1 , a_2 , a_3 , ...

such that both sequences have limit π.

Using trigonometrical notation, we see that the two semiperimeters are given by

a_n = K*tan(π/K), b_n = K*sin(π/K),

where K = 3*2^(n-1). Equally, we have

a_(n+1) = 2K*tan(π/(2K)), b_(n+1) = 2K*sin(π/(2K)),

and it is not a difficult exercise in trigonometry to show that

(1/(a_n) + 1/(b_n)) = 2/(a_(n+1)) . . . (1)

(a_(n+1))*(b_n) = (b_(n+1))^2 . . . (2)

2006-11-17 06:18:42 · answer #3 · answered by Paritosh Vasava 3 · 0 0

Pi is half the circumference of a circle, equaling 180 degrees.

2006-11-17 07:51:27 · answer #4 · answered by bldudas 4 · 0 0

PI, referring to a circle, is the ratio of the perimeter of the circle to its diameter

2006-11-17 07:26:39 · answer #5 · answered by grandpa 4 · 0 0

Pi is the ratio of the circumference of a circle to its diameter

The character is π

Greek letter π

Archimedes Constant

Irrational Number

Used in Mathmatics, Physics and engineering

Numerical value is 3.141592654

- - - - - - - - - - - - - - - - - - - - - - -

Click on the URL below for additional information of Pi.

mathforum.org/dr.math/faq/faq.pi.html


en.wikipedia.org/wiki/Pi


- - - - - -s-

2006-11-17 07:29:54 · answer #6 · answered by SAMUEL D 7 · 0 0

Pi is defined as the area
of a circle of unit radius

2006-11-17 06:11:12 · answer #7 · answered by Dupinder jeet kaur k 2 · 0 1

22/7
or in decimal
3.1428571428571428571428571428571
2 x pi x r = circumference
pi x r squared = area
both of a circle

2006-11-17 06:10:57 · answer #8 · answered by Ruthie Baby 6 · 0 0

PI is half the circumference of a circle, or 180 degrees of that circle.

2006-11-17 06:00:17 · answer #9 · answered by Anonymous · 1 2

Pi is a specific number with an infinite amount of digits after it's decimal point. 3.1415926535, that's Pi to 10 decimal places which is more accurate that any calculator because they always round up to 3.141592654.

2006-11-17 05:55:25 · answer #10 · answered by of_the_beautiful_ordinary 2 · 1 0

fedest.com, questions and answers