English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-11-15 15:46:06 · 5 answers · asked by iheartcilantro 1 in Science & Mathematics Mathematics

Derivative of [six(3x)]^x

2006-11-15 15:59:48 · update #1

5 answers

y = ([sin(3x)]^x)

lny = x ln ([sin(3x)])

(1/y) dy/dx = d/dx(x ln ([sin(3x)]) )
or, dy/dx = y [ln ([sin(3x)]) ) + x d/dx(ln (sin(3x)) ) ]

now x d/dx(ln (sin(3x)) )
= x (1/ sin(3x) ) d/dx(sin(3x))
= x (1/ sin(3x) ) cos(3x)
= x cot (3x)

so, dy/dx = y[ ln(sin(3x)) + x cot (3x) )
or, dy/dx = ([sin(3x)]^x)[ ln(sin(3x)) + x cot (3x) )

2006-11-16 00:35:16 · answer #1 · answered by The Potter Boy 3 · 0 0

lnsin3x + 3xcos3x / sin3x

or

lnsin3x + 3xcot3x

2006-11-16 00:11:17 · answer #2 · answered by waleed 1 · 0 0

just [sin (2x + x)]^x
[sin 2x cos x + cos 2x sin x]^2
[2sinxcos^2x + cos^2xsinx - sin^2x]^x
[2sinxcos^2x + cos^2xsinx - 1 + cos^2x]^x
[cos^2x(2sinx + sinx + 1) -1]^x

2006-11-16 00:09:49 · answer #3 · answered by Anonymous · 0 0

without knowing what x is, you can only represent it as it is in your question.

2006-11-15 23:54:24 · answer #4 · answered by Mr. Engineer 2 · 0 0

make sin then ^x!

2006-11-15 23:50:12 · answer #5 · answered by Vladimir S 2 · 0 0

fedest.com, questions and answers