English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

4 - i sqrt(3)
--------------
4 + i sqrt(3)

Thanks in advance. Please show work.

2006-11-15 06:53:17 · 4 answers · asked by SlashDance 3 in Science & Mathematics Mathematics

4 answers

Multiply the top and bottom by: 4 - i sqrt(3)
(4 - i sqrt(3))(4 - i sqrt(3))
---------------------------------
(4 + i sqrt(3))(4 - i sqrt(3))

The denominator becomes a difference of squares:
(4 - i sqrt(3))²
-----------------
4² - (i sqrt(3))²

Expand the denominator:
(4 - i sqrt(3))²
-----------------
16 - (-1)(3)

(4 - i sqrt(3))²
-----------------
19

Expand the numerator:
4² - 8i sqrt(3) - (i sqrt(3))²
---------------------------------
19

Simplify:
16 - 8i sqrt(3) - (-1)(3)
----------------------------
19

19 - 8i sqrt(3)
-----------------
19

Answer:
1 - i (8/19)*sqrt(3)

2006-11-15 06:58:36 · answer #1 · answered by Puzzling 7 · 1 0

When doing products and quotients, it's easier to work with polar form:

However, you dividing a number by its complex conjugate. So if
theta = arctan (sqrt(3)/4) (use radians)

then ratio is

e^(i*(-theta-theta)) = e^(i*2*theta)

2006-11-15 07:14:11 · answer #2 · answered by modulo_function 7 · 0 0

rationalising by multiplying by 4-irt3
(4-irt3)^2/(4^2-i^2*3)
=4^2-8irt3+i^2*3/7
=16-3-8rt3i/7
=13/7 -(8rt3/7)i

2006-11-15 06:58:41 · answer #3 · answered by raj 7 · 0 0

You must multiply both top and bottom by conjugate of bottom.
The conjugate of a+ib is a-ib
4-isqrt 3 (4-isqrt3)(4-isqrt3)
----------- = --------------------------
4+isqrt3 (4+isqrt3)(4-isqrt3)

= (4-isqrt3)^2/(16 +3) = (4-isqrt3)^2/19
=(13-i8sqrt3)/29

2006-11-15 07:10:28 · answer #4 · answered by ironduke8159 7 · 0 0

fedest.com, questions and answers